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Abstract—We present a novel image segmentation method
based on statistical shape model fitting. Instead of fitting the
model to raw intensity values we consider object probabilities.
The abstraction from the plain intensity images to probability
maps makes the segmentation more robust against misleading
texture inside the object or surrounding background. The target
object probability is predicted based on random forest regression
trained with neighborhood dependent features of sample images.
In contrast to similar approaches, both, the object boundary as
well as the whole object and background region are considered
for segmentation. We apply our approach to a 3D cone beam
computed tomography image dataset of the jaw region where
we segment the wisdom tooth shape. Compared to a boundary-
and a region-based method we obtain superior segmentation
performance.

Keywords—medical image segmentation, statistical shape model,
nonparametric appearance model, random forest regression

I. INTRODUCTION

Object segmentation is a frequent task in medical image
analysis. To cope with background clutter, missing edges
or noise in the image, statistical shape priors have become
indispensable. However, if objects have heterogeneous inten-
sity values or share intensity values with other objects, their
assignment based on plain intensities is ambiguous.

In this paper, we present a deformable model-based image
segmentation method where the shape model is fitted to
object probabilities instead of raw intensity values. This makes
the segmentation more robust to misleading texture inside
the object or background clutter. Formally, the segmentation
problem can be formulated as follows: A reference label map
LR : IRd → {0, 1} is deformed by a sought deformation field
u : IRd → IRd, such that it matches the unknown target label
map LT , which assigns each point of a corresponding target
image IT : IRd → IR as belonging to object or background.
Since LT is not known, we predict the object probability from
the target image IT and represent the resulting predicted target
shape by a probabilistic shape function PT : IRd → [0, 1],
where PT (x) denotes the probability of a point x ∈ IRd

being part of the object of interest. We formulate the joint
minimization functional for segmentation

û := argmin
u∈U

D[PT , LR, u] + γR[u], (1)

where D is a similarity term, which quantifies the matching be-
tween the deformed reference label map LR and the predicted
target probability map PT . R is a regularizer, which measures

CT Image Probability Map Label Map

Fig. 1. Slice through a test sample where the whole tooth should be segmented
from the jaw bone. (a) In the CT image, the dark pulp structure inside the
tooth as well as the bright tooth enamel are visible. The tooth’s dentin shares
intensity values with the jaw bone. (b) Probability map of the object prediction
(red=1, blue=0). (c) Ground truth label map.

how well the current solution u fits to our prior assumption
about the space of admissible deformations U .

The important part of the data term is how to obtain PT out
of the target image IT . We propose to learn such a transfor-
mation from training images in a discriminative manner using
random forest regression. This has the advantage, that not only
intensity distributions but also higher level structures using
advanced image features can be learned from sample data.
These are, for example, parts inside the object or surrounding
background which have no well-defined correspondence over
all examples i.e. parts whose variability cannot be explained
by the deformable model.

The shape variation is modeled by the reference label map
LR which is deformed by a parametrized deformation field
of the form uα(x) = μ(x) +

∑
i αiφi(x) which models the

space of admissible deformations. The minimization problem
becomes a parametric problem

α̂ := argmin
α∈IRn

D[PT , LR, uα] + γR[α]. (2)

While this parametrization is very general, we focus on basis
functions φi, which are learned from nonrigidly registered
training label maps using principal component analysis. As
such, the space of admissible deformations is restricted to the
span of the training samples, which makes the optimization
robust to noise and boundary insufficiencies, as for instance
missing edges.

Our approach is mainly inspired by Cremers et al. [1],
where the probabilistic definition of shape is introduced. They
use a linear model of probabilistic training shapes as a prior
and derive a convex energy term for segmentation. In our work
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however, we consider a deformation model on a reference
shape, which leads to a nonconvex optimization, but allows to
generate shapes of a broader class of objects. Furthermore, in
[1] color histograms are learned to predict object probabilities,
whereas in [2] conditional random fields are used for capturing
local pixel dependencies for prediction.

In parametric approaches, based on point distributions [3]–
[5], appearance profiles orthogonal to the object boundary
drive the model fitting. One problem common to these ap-
proaches is, that they do not model object and background
explicitly since they only consider information around the
object boundary. Region based appearance methods [3], [6],
[7] model the whole inside of the object using the learned
intensity or appearance distribution of the object from training
samples. However, no background is modeled. In [8], the
background is considered, but only based on few feature
landmarks. In [9], the shape evolution is driven by point-
wise random forest regression. However, in our method, no
explicit shape model is needed. Atlas-based segmentation
methods [10]–[12] try to construct a reference shape having a
representative appearance, which is fitted to unseen data. An
advantage of atlas-based approaches is that they are straight
forward to optimize. However, an atlas has to be selected
or constructed and it is difficult to cover the background in
an atlas. Geometric approaches [13] are topology independent
and have been very successful. However, because of a large
degree of freedom, the optimization is not straight forward and
computationally intensive [14]. For a comprehensive overview
about deformable model-based image segmentation we refer
to the review of Gavriil Tsechpenakis [15].

We tested our method on a cone beam computed tomogra-
phy (CBCT) image dataset of the jaw region for segmenting
the wisdom tooth. A challenging background is the jaw bone,
which is difficult to distinguish from the tooth’s roots, because
of lack of intensity or texture contrast. Furthermore, inside the
tooth there is a misleading pulp structure which is difficult to
jointly model with the tooth shape variation. In Fig. 1, a typical
example is shown. Among others, for the object prediction,
we use Harmonic Filters [16] as feature extraction method.
We show a significant performance gain using our method
compared to the Active Shape Model of Cootes et al. [3] and
the intensity model of Cremers et al. [1].

II. METHOD

A. Similarity Measure

For the Functional (2), we define a (dis)-similarity term
D, which consists out of the following parts. The object and
background prediction for each point in the image is estimated
separately and treated as independent. Hence, for the full object
resp. background probability, we integrate over the logarithms
of all object resp. background points. Additionally, as object
boundary term, a weighted total variation norm [17] is added
to the metric. An edge indicator serves as the weighting.

Let the deformed reference label map LR(x + u(x)) be
denoted as Lu and Pob, Pbg as the object and background
probability maps of the target image IT . We define the

similarity measure

D[u] =− λ

∫
IRd

log (Pob(x))Lu(x)dx (3)

− λ

∫
IRd

log (Pbg(x)) (1− Lu(x))dx (4)

+ (1− λ)

∫
IRd

1

1 + |∇Pob(x)| |∇Lu(x)|dx, (5)

where |∇ · | denotes the gradient magnitude. Since Lu is a
binary label map, the first term (3) measures the segmentation
quality on the region inside the object, (4) on the background
and the last term (5) along the boundary of the predicted shape.
The trade-off between the region terms and the boundary is
controlled by λ.

B. Random Forest Regression

The important part to define is how Pob and Pbg are
predicted, given a target image IT . Let a list of n training
images {Ii}ni=1 and corresponding ground truth label maps

{Li}ni=1 be given. Let further Fi : IRd → IRm be a feature
image of Ii obtained by a general feature extraction method.
Hence, for each point in the image, there is n-times an m-
dimensional feature vector with a corresponding binary label
indicating the point being object or background. With this
training data the object and background prediction can be
learned by any regression method. In this paper, we use
random forest regression. The obtained prediction accuracy
hinges on the choice of the extracted features. If only the
image intensities are considered, the intensity distribution
(histogram) is estimated. However, more advanced features as
e.g. Laplacian of Gaussians, Sobel edges or Harmonic Filters
[16] incorporate point neighborhoods and are able to capture
long range structural dependencies of different parts of the
object which improves the prediction performance (see Result
Section III).

C. Statistical Deformation Model

Given a training set X = {u1, . . . , un} of deformation
fields, the variation of shape LR(x+ uα(x)) is modeled by a
linear model

uα(x) = μ(x) +
n∑

i=1

αiφi(x), (6)

where μ is the mean deformation μ(x) = 1
n

∑n
i=1 ui(x) and

φi : IRd → IRd are the eigenmodes of the training set X .
With this parametrization over α, a simple Gaussian prior is
used as regularization R[α] = ‖α‖2. The joint functional (2) is
minimized with respect to the parameters α using the following
energy gradient: Let rewrite D as

D[u] =λ

∫
IRd

P (x)LR(x+ u(x))dx (7)

+ (1− λ)

∫
IRd

Q(x)|LR(x+ u(x))|dx, (8)

where P (x) = log
Pbg(x)
Pob(x)

and Q(x) = 1
1+|∇Pob(x)| . Let further

(∇LR)(x+ u(x)) be denoted as (∇L)u(x) and (∇2LR)(x+
u(x)) as (∇2L)u(x). The energy gradient becomes

dD[u] = λ · dDA[u] + (1− λ) · dDB [u], (9)
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Fig. 2. Sample pulp shapes.

where the areal part

dDA[u] =

∫
IRd

P (x)(∇L)u(x)Ju(x)dx (10)

and the boundary part

dDB [u] =

∫
IRd

Q(x)
(∇L)u(x)Ju(x)

|(∇L)u(x)Ju(x)|
·
(
((∇2L)u(x)Ju(x))

T
Ju(x)

+ (∇L)u(x)Ju(x)Hu(x)
)
dx. (11)

J denotes the Jacobian. Since u is linear in the parameters α,
the Hessian H vanishes and the derivative can be efficiently
computed.

Having given n training label maps {Li}ni=1, we switch
their representation to signed distance maps {Si}ni=1 where the
zero level set is the object boundary. Using nonrigid Bspline
registration (see Rueckert et al. [18]) the shapes are matched to
a reference SR such that Si(x+ ui(x)) ≈ SR(x), ∀x ∈ IR. A
reference sample is selected from the training distance maps to
which all other training samples are registered. The obtained
average deformation is applied to the reference label, resulting
in an average label map which again is used in the registration
as final reference for all training samples, similar to the atlas
construction in [12].

III. RESULTS

In this section, we evaluate the segmentation performance
of our method. We show the performance obtained by our
object prediction approach and the impact of choosing an
arbitrary sample as reference in comparison to the above men-
tioned average reference. Further, we compare our approach
with the classical Active Shape Model [3] which serves as
baseline. Moreover, we show comparisons with the method of
Cremers et al. [1] and an extension of their approach using the
object prediction of our method. We evaluate the results using
two quantitative measures. We sample the boundary contour
of the ground truth label maps as well as the ones of our
segmentation results to get meshes, which can be compared.
As a quantitative measure we apply the bidirectional local
distance (BLD) which was proposed by Kim et al. [19] in order
to compare segmentations. Additionally, we evaluate our seg-
mentation performance using the dice coefficient between the
ground truth and the segmentation label maps. The statistical
deformation model is implemented using Statismo [20].

A. Description of the Data

We performed all experiments on a dataset of 26 training
and 20 test CBCT images of the jaw region with the wisdom

Intensity values Intensity probability map

Tooth probability map Improved probability map

Fig. 3. Example probability maps.

tooth as the object of interest. For all images a ground truth
label map is given by experts for following labels: whole
tooth, pulp (nerve structure inside the tooth) and the joint
structure dentin/enamel (whole tooth except pulp) including
the ones of neighboring teeth. The dataset is restricted to
double-rooted teeth. The images have been similarity aligned
and their histograms aligned to a training sample. The pulp
structure is jointly modeled as tooth shape together with
dentin and enamel, because the different number of tracts and
hunches makes the registration of the pulp difficult. The point-
wise correspondence assumption for this kind of structure
is incongruous. In Fig. 2, sample pulp shapes are shown to
illustrate this issue.

B. Object Prediction

We tested our method with two object prediction setups.
Intensity: A random forest regressor on the whole tooth labels
using the intensity values only. Improved: Two random forest
regressors; one on the pulp and one on the dentin/enamel
labels. The following features were used: intensity values,
Laplacian of Gaussian on three scales (σ = {0.5, 1, 2}),
Gaussian Gradient Magnitudes, Sobel edges and Multi-channel
Harmonic Filters [16] of the order 3 on four scales (σ =
{2, 5, 8, 11}, γ = {1, 1, 1, 1}). For prediction, the maximum
of the two regression outputs is used. All random forests
were trained with 50000 points per label uniformly sampled
as training data (a border of 0.75mm has been excluded from
sampling to reduce image boundary effects). 256 trees were
learned per forest, where 30% of the sampled points were used
per tree. As splitting criterion, the Gini impurity is used.

In Fig. 3, example probability maps of the two different
prediction methods intensity and improved applied to a test
sample, are shown. Additionally, we compare the probability
map to a prediction where the same features were used as in
improved, but with only one single random forest trained on
the whole tooth label. In the intensity probability map the pulp
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TABLE I. FORMAT: AVERAGE PERFORMANCE ± 1 STDEV.

Method Test Training
Υ

o
b

intensity 0.658 ±8.19e− 3 0.692 ±9.41e− 3
tooth 0.810 ±8.77e− 3 0.879 ±2.78e− 3
improved 0.834 ±5.77e− 3 0.886 ±4.71e− 3

Υ
o

b
jΥ

b
g intensity 0.601 ±1.44e− 3 0.605 ±1.81e− 3

tooth 0.776 ±6.75e− 3 0.842 ±1.49e− 3
improved 0.794 ±2.31e− 3 0.825 ±1.11e− 3

TABLE II. FORMAT: AVERAGE PERFORMANCE ±1 STDEV.

Method Test (BLD) Training (BLD)

ASM 0.418 ±18.1e− 3 0.376 ±15.7e− 3
Cremers et al. (intensity) 0.366 ±4.00e− 3 0.345 ±5.53e− 3
Cremers et al. (improved) 0.341 ±3.72e− 3 0.328 ±5.19e− 3
Our (intensity, arb. ref.) 0.387 ±65.5e− 3 0.189 ±3.18e− 3
Our (intensity, no bound.) 0.365 ±44.0e− 3 0.170 ±2.47e− 3
Our (intensity) 0.350 ±38.6e− 3 0.174 ±2.13e− 3
Our (improved, arb. ref.) 0.362 ±20.3e− 3 0.235 ±7.49e− 3
Our (improved, no bound.) 0.338 ±22.5e− 3 0.193 ±1.17e− 3
Our (improved) 0.334 ±20.8e− 3 0.199 ±1.45e− 3

Cremers et al. (ground truth) 0.310 ±3.99e− 3 0.233 ±5.72e− 3
Our (ground truth) 0.211 ±3.28e− 3 0.091 ±0.13e− 3

Method Test (dice) Training (dice)

Cremers et al. (intensity) 0.881 ±0.40e− 3 0.886 ±0.68e− 3
Cremers et al. (improved) 0.892 ±0.26e− 3 0.896 ±0.44e− 3
Our (intensity, arb. ref.) 0.905 ±1.54e− 3 0.942 ±0.26e− 3
Our (intensity, no bound.) 0.907 ±1.07e− 3 0.946 ±0.19e− 3
Our (intensity) 0.910 ±0.86e− 3 0.945 ±0.17e− 3
Our (improved, arb. ref.) 0.904 ±0.51e− 3 0.932 ±0.30e− 3
Our (improved, no bound.) 0.909 ±0.64e− 3 0.941 ±0.06e− 3
Our (improved) 0.910 ±0.54e− 3 0.939 ±0.07e− 3

Cremers et al. (ground truth) 0.901 ±0.28e− 3 0.927 ±0.54e− 3
Our (ground truth) 0.936 ±0.16e− 3 0.968 ±0.02e− 3

could not be predicted as belonging to the object, because it
shares intensity values with the background. Furthermore, the
bone structure of the jaw is not fully predicted as background.
In the tooth probability map, the background and the neigh-
boring teeth (upper left of the tooth crown) could be greatly
reduced. But, there is some uncertainty left in the region of
the roots. In the improved probability map, the background is
predicted accurately, while the neighboring teeth are predicted
as object as well. Nevertheless, the overall tooth structure
including the roots is better predicted than in the other two
probability maps. In Tab. I, the prediction performance of
the different methods are compared using the performance
measures

Υob =

∑
x LT (x)Pob(x)∑

x LT (x)
, Υbg =

∑
x(1− LT (x))Pbg(x)∑

x(1− LT (x))
,

(12)
where LT is the ground truth target label map. The improved
method yields the best object prediction.

C. Evaluation of Segmentation

In the following, we discuss the segmentation performance
of our method on a few qualitative test cases. We quantitatively
evaluate our approach and compare the results with the ASM
method [21]. Further, we compare them to the method of
Cremers et al. [1] where only the model fitting without the
global optimization was used, since the images are pre-aligned.
For our method we have chosen the following parameters:
weighting of the regularization γ = 0.0001 and the trade-off
between region and boundary terms λ = 0.75. Image gradients
have been calculated by convolving the first order derivative
of a Gaussian, where we used σ = 0.15. In Fig. 4, we show

Fig. 4. Three difficult test images. In the upper row, the original CBCT
images are shown. The second row shows the improved probability maps.
The third row shows the outline of the ground truth label in blue and the
segmentation results in yellow. In the last row, the teeth are visualized as 3D
meshes in the same colors.

qualitative results of three difficult test examples which have
been well segmented using our approach. The first is difficult,
because of touching root tips. In the second one, there is almost
no texture contrast between jaw and root structure. And in the
last example there is a lot of noise present in the region of the
roots. The bottom row shows the ground truth shape (blue)
overlayed with our segmented shape (yellow).

In Tab. II, numerical results of the following experiments
are provided. In the upper part, the BLD between the ground
truth and resulting shapes was used as performance measure,
while in the bottom part, the dice coefficient on the whole
image domain serves as segmentation accuracy measure. The
ASM method was performed on the histogram matched images
and the method of Cremers et al. [1] using the intensity and
the improved prediction. We evaluate two additional variants
for our approach: one using a training label map as reference
(arb. ref.) and one without the boundary term (λ = 1) (no
bound.). In the two last rows the ground truth label maps
are used as probability maps (ground truth). Compared to
the intensity experiments, the improved object prediction could
always improve the test segmentation performance even in the
method of Cremers et al. [1]. The two additional experiments
arb. ref. and no bound. show that the constructed reference
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Fig. 5. Three examples of outliers.

shape as well as the incorporation of the boundary term
improve the test segmentation. Since the ASM method only
considers object boundary its segmentation performance is
minor. Compared to the intensity model of Cremers et al. [1]
the deformation model and the incorporation of the object
boundary in our method leads to better segmentation results.

In Fig. 5, three bad examples are depicted. The first one
is caused by the expressiveness of the statistical shape model.
In the training data, there is no sample with such difference in
the two root lengths. The second one originates from a fusion
of almost the full roots, which is difficult to handle with our
method. In the last example, the roots could not be predicted
as object well enough.

IV. CONCLUSION

We presented a new segmentation method based on a prob-
abilistic shape representation and an implicit statistical shape
model. A main part of the method is the object and background
prediction, which is learned from training samples to get robust
against object boundary insufficiencies, noise and background
clutter. We compared our approach to the ASM method and the
method of Cremers et al. [1]. In our experiments on 3D CBCT
images, we show superior segmentation performance using our
method. We plan to integrate feature selection into the object
prediction to leaner its computational costs. The tuning of the
tree count and depth in the random forest training is planned
as future work. We plan also to apply our method to multi-
modality datasets where the same structure is learned from
different image modalities for the object prediction. To reduce
the statistical deformation model bias for small sample sets, we
plan to integrate the Gaussian process framework of Lüthi et
al. [22]. Furthermore, an automatic initialization of the model,
similar to [1] is currently ongoing work.

REFERENCES

[1] D. Cremers, F. R. Schmidt, and F. Barthel, “Shape priors in variational
image segmentation: Convexity, lipschitz continuity and globally opti-
mal solutions,” in CVPR, 2008.

[2] M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla,
E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor
imaging and volume quantification in mouse model using spectral-
domain optical coherence tomography,” Optics express, vol. 17, no. 5,
p. 4074, 2009.

[3] T. F. Cootes, G. Edwards, and C. Taylor, “Comparing active shape
models with active appearance models,” in Proc. of British Machine
Vision Conference. BMVA Press, 1999, pp. 173–182.

[4] M. Brejl and M. Sonka, “Object localization and border detection
criteria design in edge-based image segmentation: automated learning
from examples,” IEEE Trans. on Medical Imaging, vol. 19, no. 10, pp.
973–985, 2000.

[5] H. Li and O. Chutatape, “Automated feature extraction in color retinal
images by a model based approach,” IEEE Trans. on Biomedical
Engineering, vol. 51, no. 2, pp. 246–254, 2004.

[6] J. G. Bosch, S. C. Mitchell, B. P. Lelieveldt, F. Nijland, O. Kamp,
M. Sonka, and J. H. Reiber, “Automatic segmentation of echocardio-
graphic sequences by active appearance motion models,” IEEE Trans.
on Medical Imaging, vol. 21, no. 11, pp. 1374–1383, 2002.

[7] R. Larsen, M. B. Stegmann, S. Darkner, S. Forchhammer, T. F. Cootes,
and B. Kjær Ersbøll, “Texture enhanced appearance models,” Computer
Vision and Image Understanding, vol. 106, 2007.

[8] B. Van Ginneken, A. F. Frangi, J. J. Staal, B. M. ter Haar Romeny,
and M. A. Viergever, “Active shape model segmentation with optimal
features,” IEEE Trans. on Medical Imaging, vol. 21, no. 8, pp. 924–933,
2002.

[9] T. F. Cootes, M. C. Ionita, C. Lindner, and P. Sauer, “Robust and
accurate shape model fitting using random forest regression voting,”
in Computer Vision–ECCV 2012. Springer, 2012, pp. 278–291.

[10] J. C. Gee and R. K. Bajcsy, “Elastic matching: Continuum mechanical
and probabilistic analysis,” Brain warping, vol. 2, 1998.

[11] H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal
probabilistic atlas and its application in segmentation,” IEEE Trans. on
Medical Imaging, vol. 22, no. 4, pp. 483–492, 2003.

[12] A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen, “Automatic
construction of multiple-object three-dimensional statistical shape mod-
els: Application to cardiac modeling,” IEEE Trans. on Medical Imaging,
vol. 21, no. 9, pp. 1151–1166, 2002.

[13] D. Mumford and J. Shah, “Optimal approximations by piecewise
smooth functions and associated variational problems,” Communica-
tions on pure and applied mathematics, vol. 42, no. 5, pp. 577–685,
1989.

[14] M. Rousson and N. Paragios, “Prior knowledge, level set representations
& visual grouping,” International Journal of Computer Vision, vol. 76,
no. 3, pp. 231–243, 2008.

[15] G. Tsechpenakis, “Deformable model-based medical image segmenta-
tion,” in Multi Modality State-of-the-Art Medical Image Segmentation
and Registration Methodologies, 2011, pp. 33–67.

[16] M. Schlachter, M. Reisert, C. Herz, F. Schlurmann, S. Lassmann,
M. Werner, H. Burkhardt, and O. Ronneberger, “Harmonic filters for 3d
multichannel data: Rotation invariant detection of mitoses in colorectal
cancer,” IEEE Trans. on Medical Imaging, vol. 29, no. 8, pp. 1485–
1495, 2010.

[17] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1, pp. 259–268, 1992.

[18] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and
D. J. Hawkes, “Nonrigid registration using free-form deformations:
application to breast mr images,” IEEE Trans. on Medical Imaging,
vol. 18, no. 8, pp. 712–721, 1999.

[19] H. S. Kim, S. B. Park, S. S. Lo, J. I. Monroe, and J. W. Sohn,
“Bidirectional local distance measure for comparing segmentations,”
Medical physics, vol. 39, p. 6779, 2012.
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