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Abstract. Non-rigid registration and shape model fitting are the central
problems in any shape modeling pipeline. Even though the goal is in both
problems to establishing point-to-point correspondence between two ob-
jects, their algorithmic treatment is usually very different. In this paper
we present an approach that allows us to treat both problems in a unified
algorithmic framework. We use the well known formulation of non-rigid
registration as the problem of fitting a Gaussian process model, whose
covariance function favors smooth deformations. We compute a low rank
approximation of the Gaussian process using the Nyström method, which
allows us to formulate it as a parametric fitting problem of the same form
as shape model fitting. Besides simplifying the modeling pipeline, our ap-
proach also lets us naturally combine shape model fitting and non-rigid
registration, in order to reduce the bias in statistical model fitting, or to
make registration more robust. As our experiments on 3D surfaces and
3D CT images show, the method leads to a registration accuracy that is
comparable to standard registration methods.

1 Introduction

Statistical shape and deformation models are a well established part of many
computer vision and medical image analysis pipelines. Both in building the sta-
tistical model, and in its application, the central problem is to find point-to-point
correspondence between a reference (i.e. an image or surface) and a given image,
such that the new image can be explained in terms of the reference. In the case
where the reference is represented as an image, this is solved using image regis-
tration. The goal is to find a deformation field u∗ from a space of deformations
F , which maps the corresponding points from the reference image IR to a target
images IT . Formally, this is written as an optimization problem:

u∗ := argmin
u∈F

D[IR, IT , u] + ηR[u], (1)

where D measures image similarity and the regularizer R how well the solution
matches our prior assumptions. Given a statistical model, i.e. a generative model
of the form M[α](x) = μ(x) +

∑
i αiφi(x), which models the space of deforma-

tions in terms of a set of (learned) basis function φi, the optimization problem
(1) becomes the parametric problem

α∗ := argmin
α∈IRd

D[IR, IT ,M[α]] + ηR[α]. (2)
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It can be minimized using standard optimization techniques. The general non-
rigid registration problem, is harder to solve, as there is no explicit model for
the deformations available. In this case a variational approach is often employed,
where the admissible deformations are specified by the regularization term R[u]
which most often takes the form of a differential operator. A solution to the
problem is obtained by solving a non-linear partial differential equation.

For building statistical models this mismatch of methodologies is unfortu-
nate and adds considerable complexity to the modeling pipeline. In this paper
we propose to unify both problems by constructing a parametric model for the
general registration problem. The idea is to model the deformations as a Gaus-
sian process GP(μ, k), with mean function μ and covariance function (or kernel
function) k. While this model is in general non-parametric, we can obtain a
parametric approximation if we assume that the modeled deformation fields are
sufficiently smooth. This is done by computing a low-rank approximation k̃ of
the covariance function in terms of the first leading terms of its Mercer ex-
pansion k(x, y) =

∑n
i λiφi(x)φi(y) [11]. Under the new model GP(μ, k̃), each

deformation can be written as

M[α](x) = μ(x) +
∑

i

αiλiφi(x). (3)

Thus, we can formulate non-rigid registration in the parametric form (2).
A main advantage of using Gaussian processes to model the deformations, is

its flexibility. We can estimate its mean and covariance function from examples
shapes to obtain a statistical model GP(μSM , kSM ) that incorporates shape con-
straints [1,12]. If we choose a zero mean and covariance function kg that favors
smooth functions, the resulting model GP(0, kg) is generic and similar to mod-
els obtained by using differential operators as a regularizer [11]. The different
mean and covariance functions can be combined, to construct a new Gaussian
process GP(μSM , kD + kSM ) that combines the characteristics of both models.
Depending on the point of view, the resulting optimization problem can either be
interpreted as a registration, which incorporates prior shape knowledge (see e.g.
[17,18]) or as shape model fitting, which reduces the model bias [3,16]. In fact,
this solution can be seen as an extension of the approach proposed by Wang et
al. [16] for active shape models to statistical models with dense correspondence.

The use of Gaussian process models for non-rigid registration is not new. It
has been extensively studied in the 90s by Grenander et al. (see the overview
article [4] and references therein). Steinke et al. [13] later approached surface
registration from a machine learning perspective, which led to a similar algo-
rithm based on kernel methods. This approach was extended by Lüthi et al. [7]
to a hybrid registration approach using Gaussian Process regression. The main
novelty of our work is the use of the Nyström approximation to obtain a low-
rank approximation of the Gaussian process. This allows us to derive an efficient
numerical methods, for any covariance function that is sufficiently smooth, with-
out requiring that the eigenfunctions are known analytically. In particular, this
makes it possible to combine covariance functions for shape model fitting and
non-rigid registration, which don’t admit such an analytic form.
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2 Background

2.1 Gaussian Processes

Stochastic processes allow us to define a probability distribution over a function
space. Formally, a stochastic process is a collection of random variables f(x), x ∈
Ω where Ω is an index set. A Gaussian process is a stochastic process with
the property that for any finite number of observations, x1, . . . , xn ∈ Ω the
values f(x1), . . . , f(xn) are jointly normally distributed [11]. A Gaussian process
GP(μ, k) is completely defined by its mean μ : Ω → IR and a covariance function
k : Ω ×Ω → IR. The covariance function k(x, y) specifies for each pair of points
x, y their covariance E[f(x)f(y)]. By specifying k, we define which functions
are likely under the given process. Many known covariance functions imply a
strong correlation between nearby values, which makes smooth functions more
likely. Gaussian processes can also be used to model vector-valued functions. In
this case, the covariance function becomes a matrix valued function k(x, y) :
Ω × Ω → IRd×d, with k(x, y) = E[f(x)f(y)T ]. The most simple case of matrix-
valued covariance function arise when we assume that the output dimensions are
uncorrelated. In this case, we can construct a matrix-valued covariance function
k from a scalar-valued covariance-function l by setting

k(x, y) = Id×dl(x, y),

where Id×d is the identity matrix. While vector-valued Gaussian processes seem
like an extension of the theory, it can be shown that it can be reduced to the
scalar case [5]. Thus all known results for real-valued Gaussian processes carry
over to this more general setting.

2.2 Mercer’s Expansion and Reproducing Kernel Hilbert Spaces

Closely related to a Gaussian process GP(μ, k) is the reproducing kernel Hilbert
space (RKHS) spanned by its covariance function k. An easy way to construct
this space is to start from the eigenfunction expansion of k. According to Mercer’s
theorem (see e.g. [11]), a kernel k has an expansion in terms of a orthonormal
set of basis functions:

k(x, y) =
∞∑

i=1

λiφi(x)φi(y)
T , (4)

where (λi, φi) are the eigenvalue/eigenfunctions pairs of the integral operator
Tkf(·) :=

∫
Ω
k(x, ·)f(x) dx. We can define a Hilbert space by taking linear com-

binations of these eigenfunctions: f(x) =
∑N

i=1 φi(x)αi with
∑n

i=1 α
2
i /λi < ∞.

The inner product between two functions f =
∑

i=1 αiφi and g =
∑

j=1 βjφj is

defined by 〈f, g〉k =
∑∞

i=1
αiβi

λi
. Consequently, the norm becomes

‖f‖2k = 〈f, f〉k =

∞∑

i=1

α2
i

λi
(5)
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Note that the RKHS norm penalizes the eigenfunction components correspond-
ing to small eigenvalues particularly strongly, a fact that we will use in Section 3.

2.3 The Nyström Approximation

To compute the eigenfunctions φ in the Mercer expansion (4), we use the Nyström
approximation [11]. We randomly sample points X = {x1, . . . , xN}, xl ∈ Ω and
perform a Monte Carlo integration of the eigenvalue equation:

λiφi(x
′) =

∫

Ω

k(x, x′)φi(x) dx ≈ 1

N

N∑

l=1

k(xl, x
′)φi(xl),

which results in a matrix eigenvalue problemKui = λmat
i ui. Here,Kil = k(xi, xl)

is the kernel matrix, ui denotes the i−th eigenvector and λmat
i the corresponding

eigenvalue. The eigenvalue λmat
i can be used as an approximation for λi. The

eigenfunction φi in turn can be approximated using

φ̃i(x) =

√
n

λmat
i

kX(x)ui ≈ φi(x)

with kX(x) = (k(x1, x), . . . , k(xn, x)).
1 In a practical implementation for image

registration, it is computationally infeasible to explicitly compute kX(x′) in every
evaluation of φi. A suitable strategy, which we use in our method, is to pre-
compute φ̃i(x) for the points of a (possibly lower-resolution) image grid, and to
use standard image interpolation to extend the values to the full image domain.

3 Registration Using a Low-Rank GP Model

The starting point for our method is the probabilistic formulation of the regis-
tration problem in [2]. The registration problem (1) is interpreted as the MAP
estimation problem:

argmax
u

p(u)p(IT |IR, u), (6)

where p(u) ∝ exp(−R[u]) is a Gaussian process prior over the admissible defor-
mation fields and p(IT |IR, u) ∝ exp(η−1D[IR, IT , u]) is the likelihood. However,
instead of specifying a regularization operator to define a Gaussian process, we
model the mean μ and covariance function k directly. A MAP solution to (6)
can be found by solving a minimization problem in the RKHS Fk defined by k
(see e.g. [15] for details):

argmin
u∈Fk

D[IR, IT , u] + η‖u‖2k, (7)

where ‖·‖k denotes the RKHS norm. In the next step we construct a low-rank
approximation defining an approximate kernel k̃(x, x′) =

∑n
i=1 λiφi(x) ⊗ φi(x

′)

1 For the case of matrix-valued kernels, k : Ω × Ω → IRd×d, the matrices K and kX
become block matrices: K ∈ IRnd×nd and kX ∈ IRnd×d.
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obtained as an eigenfunction expansion using the n largest eigenvalues. From (5)
we see that the RKHS norm strongly penalizes components whose corresponding
eigenvalue is small. Therefore, leaving out these components will have a negligible
effect to the solution if the eigenvalues of the kernel k are quickly decreasing.
Each deformation in the space modeled by the Gaussian process GP(μ, k̃) can
now be written as the finite sum u(x) = μ(x) +

∑n
i=1 αiφi(x). Thus, we can

restate the problem in the parametric form

argmin
α1,...,αn

D[IR, IT , μ+

n∑

i=1

αiφi] + η

n∑

i=1

α2
i

λi
, (8)

which can be minimized using any optimization algorithm.

3.1 Surface Registration

So far we have presented our method in the context of image registration. How-
ever, the approach is more general and the Gaussian process that defines the
deformation model can be defined on arbitrary domains. Thus, we can define an
algorithm for surface registration, by specifying the deformation model GP(μ, k)
on a reference surface ΓR ⊂ IRd. A simple formulation of the surface registration
problem, which we use in this paper, is

argmin
α1,...,αn

∑

xj∈ΓR

DT (xj + μ(xj) +

n∑

i=0

αiφi(xj))
2 + η

n∑

i=1

α2
i

λi
, (9)

where DT is a distance map defined for ΓT .

4 Results

In this section we illustrate how our approach can be used to reduce the bias in
statistical shape model fitting and show its feasibility for the use in 3D image
registration. Our implementation uses the Statismo framework [8] for represent-
ing the Gaussian processes. Surface Registration is done using ITK2 while for
image registration we use Elastix [6]. Our implementation is freely available as
part of Statismo3. For all the examples, we use a sum of squares distance metric
and an LBFGS optimizer.

Shape Model Fitting. For our first experiment we used random face surfaces,
which were generated using the Basel face model [10]. We sampled 60 faces
as a training set to build a statistical shape model, and used 40 additional
samples as a test set. We compared the fitting performance for four different
models: 1) A shape model from all the samples, which we use as a ground
truth, 2) A shape model obtained from the training data, which we denote by

2 ”The Insight Segmentation and Registration Toolkit” - http://www.itk.org
3 “Statismo” - http://www.statismo.org

http://www.itk.org
http://www.statismo.org
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Fig. 1. Fitting results of different models to a set of 40 test surfaces. The shape model
has a considerable bias. Combining it with a Gaussian with large bandwidth (which
itself does not give good fitting results) helps to reduce the bias.

Fig. 2. A fitting result of a Gaussian model (middle) and a combined model (right) to
a dataset with artifacts. Due to the shape constraint, the combined model preserves
the nose shape better than the Gaussian model.

GPSM (μSM , kSM ), 3) a model GPG(0, kG), with a Gaussian kernel kg(x, x
′) =

exp(‖x − x′/σ2‖2) (σ = 100), which is used to model the bias, 4) a combined
model GPC(μSM , kSM + kG). Figure 1 shows the result of the four different fits
obtained by minimizing (9). We observe that the shape model that was built
from the training data only is biased and cannot accurately represent the faces.
Due to the large bandwidth of the Gaussian kernel, also the Gaussian model
cannot represent the faces accurately. However, combining them clearly reduces
the bias of the shape model. In the second experiment we show how a registration
method can be made more robust by including shape information. To simulate
an artifact, we cut off the nose of one of the test faces (Figure 2a). We fit a
Gaussian model (with σ = 50) and a combination of the shape model with this
Gaussian model. Figure 2 shows that the combination of both models yields a
smaller error around the nose, compared to using only the Gaussian model.

Registration of CT Data. In this experiment we use our method for the reg-
istration of CT images of dry femur bones, with a resolution of 176× 163× 622.
We select a reference image and perform a registration to 27 test images. As a de-
formation model, we used a zero mean Gaussian process with a Gaussian kernel
(σ2 = 100). We computed a low-rank approximation using the first 300 eigen-
functions. We compare the registration performance with the standard Demons
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Rigid Demons Gaussian B-Spline B-Spline (multiscale)
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Fig. 3. Registration result achieved on a set of 27 femur images for different meth-
ods. The registration performance is measured by computing the dice coefficient of a
ground-truth segmentation. As a baseline, we use a simple rigid registration (left). Our
method (Gaussian) yields comparable performance to a standard B-spline and Demons
registration.

algorithm [14] and a B-spline registration [12]. To have a fair comparison, we
tested different parameters for each algorithm and used the best one in our
comparison. As a performance measure, we use a dice coefficient, which is com-
puted on manual segmentations of the images. Figure 3 shows the results for the
different algorithms: We see that our approach outperforms the Demons algo-
rithm and performs on par with the B-Spline registration. B-Spline registration
perform, however, slightly better when a multi-scale strategy is used. This is ex-
pected, as the simple Gaussian kernel that we use only models deformations on
a single scale. In order to obtain more flexible representation, more sophisticated
kernels, such as e.g. the multi-scale kernel proposed in [9], can be used.

5 Conclusion

We have presented a unified approach to non-rigid registration and statistical
model fitting. This is achieved by modeling the admissible deformations as a
Gaussian process, which is fitted to the data. We compute a low-rank approxi-
mation using the Nyström method, and formulate registration as a parametric
optimization problem. This makes our method computationally feasible even for
large 3D images. We have shown that by combining kernels for non-rigid regis-
tration and shape modeling, we can reduce the bias of statistical shape models,
or make non-rigid registration more robust. The main strength of our approach
is that it makes it possible to use any sufficiently smooth kernel function to spec-
ify the admissible deformations. This gives us enormous flexibility to model our
prior assumptions, while the algorithmic implementation remains the same. We
believe that using more sophisticated prior models, such as a kernel for hybrid
landmark and image registration [7], or the multi-scale kernel [9], we can obtain
very powerful methods for non-rigid registration and model-fitting.
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8. Lüthi, M., Blanc, R., Albrecht, T., Gass, T., Goksel, O., Büchler, P., Kistler, M.,
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