A unified approach to shape model
fitting and non-rigid registration
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Weak prior assumptions
Non-parametric
Variational approach
Implicit model
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Parametric
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Explicit probabilistic
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Shape modeling pipeline

Acquisition

Modeling

* Weak prior assumptions * Strong prior

e Parametric * Parametric

« Standard optimization  Standard optimization
* Explicit probabilistic * Explicit probabilistic

model model



Outline

Goal:
Replace registration with model fitting

* Why model fitting
e Conceptual formulation

— Statistical shape models and Gaussian processes

* How to make it practical

— Low rank approximation

* Application to image registration




Advantage 1: Sampling



















Advantage 2: Posterior models



















Advantage 3: Simple(r) optimization






















Statistical Shape Models

* Example data:
Surfaces in correspondence with Reference I
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Statistical Shape Models

* Estimate mean and sample covariance:
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(Gaussian process view

e “Deformation model” on I'p o

NARTNANRAL
N

— "\\ By WY % .
u~ GP(u,X SRS
S S S g R g e
3 B U RN T
- o SN, S iy
u. FR - R SN ‘
 AVARSE ! -

* Shape model:
F ~ FR + u

* Model deformations instead of learning them
* X(x,y) can be arbitrary p.d. kernel
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* k(ny) — exp(_

) enforces smoothness




Registration using Gaussian processes

* Previous work:

— U. Grenander, and M. I. Miller.
Computational anatomy: An emerging discipline.
Quarterly of applied mathematics, 1998

— B. Scholkopf, F. Steinke, and V. Blanz.
Object correspondence as a machine learning
problem. Proceedings of the ICML 2005.

Challenge:
Space of deformations is very high dimensional




Back to statistical models: PCA

Statistical model M|«;, ..., a, |
u(x) = ulx) + X" a;Vi; ¢;(x), a; ~ N(0,1)

e Mercer’s Theorem:
n
k(x,y) = 2 Aipi(x)d;i(y)
i=1

* Use Nystrom approximation to compute
(Ai, ¢i)i=1..m , (m << Il)
* Low rank approximation of k(x,y)




Eigenspectrum and smoothness
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Advantage 1: Sampling



















Advantage 2: Posterior models



















Advantage 3: Simple(r) optimization






















3D Image registration

Experimental Setup:

e 48 femur CT images

* Perform atlas matching

e Evaluation: dice coefficient with
groundtruth segmentation

Rigid Demons Gaussian B-Spline B-Spline (multiscale)



Conclusion

* Replaced non-rigid registration with model
fitting

* One concept / one algorithm
— Parametric, generative model
— Works for images an surfaces

* Extreme flexibility in choice of prior

— Any kernel can be used
— Future work: Design application specific kernels



Thank you

Source code available at:

www.statismo.org



