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Abstract

In this paper we present a novel method of consider-
ing self-occlusion when fitting faces under global illumi-
nation. The effects of self-occlusion under spherical har-
monics (SH) illumination are predicted through the use of a
a morphable model of faces. A linear function is precom-
puted which maps morphable model coordinates directly to
surface irradiance values.

We demonstrate that considering self-occlusion yields a
clear improvement over an otherwise identical reconstruc-
tion where self-occlusion is neglected. Our method suc-
ceeds at reconstructing facial attributes that are visible pri-
marily as a consequence of self-occlusion, such as the depth
of the eye sockets and the shape of the nose.

1. Introduction
We aim to estimate the shape of a face from a sin-

gle photograph under unknown arbitrary illumination and
an unknown albedo while considering the effects of self-
occlusion. Since this is an ill posed problem, we apply a
statistical model of human faces to solve the arising am-
biguities. In those models, a specific shape or albedo map
is represented by a small number of real-valued coefficients.
The small number of those coefficients allows us to estimate
them in a very stable way.

The illumination is modelled as a continuous function on
a sphere which describes the amount of light incoming from
any given spatial direction. Since faces seen in photographs
are often illuminated from many different angles, this al-
lows us to express a wide range of illumination conditions
encountered in the real world. We represent the illumination
function as a linear combination of real spherical harmon-
ics (SH) basis functions. This provides us with another low
dimensional model, this time one of incoming illumination.

Because under continuous SH illumination light can ir-

radiate any vertex from any direction, computing the effects
of self-occlusion becomes computationally very demand-
ing. The novelty of our approach is that we propose a linear
approximation of the effects of self-occlusion that is cou-
pled with our morphable model. This makes the problem
tractable on today’s computing machines and it allows us to
consider global self-occlusion in our shape extraction.

Our illumination model is limited to soft and distant
lighting, i.e. the illumination function is smooth over the
incoming direction and the amount of light incoming from
any given direction is the same across the entire face.

1.1. Previous Work

A first simple shape prior for facial image analysis was
proposed by Vetter and Blanz in 1999. They define a low-
dimensional generative statistical model of human faces and
use it to perform shape from shading constrained by that
model. Their method assumes a minimal single source illu-
mination model and it consists of an analysis by synthesis
optimization loop. In 2005, Romdhani [1] improved upon
that estimation technique by introducing a separate specular
highlight term and an edge correspondence term to the cost
function. In 2009, Knothe [2] proposed a novel morphable
model, the global-to-local model (G2L), which aims for a
better spatial separation of the components of the model.

On the computer graphics side, Ramamoorthi [3] was the
first to propose using real-valued spherical harmonics (SH)
functions to model the illumination in a scene in his semi-
nal paper from 2000. That approach was extended by Sloan
and Kauz [4] in 2003, when they presented a method of pre-
computing the effects of self occlusion under SH lighting.
In 2006, Zhang and Samaras [5] proposed an application of
SH lighting to the machine vision context, namely to the
problem of face recognition.

In 2011, Kemelmacher-Schlizerman and Basri [6] pro-
posed an application of SH illumination to facial shape from
shading. They use only one single mean shape in place of
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an entire morphable model. That mean shape is deformed
in order to explain the shading observed in the image. Their
method does not consider the effects of self occlusion.

In 2012, Elhabian et al. [7] presented another shape from
shading algorithm based on SH illumination which uses
a more realistic Torrance-Sparrow reflection model, also
without considering self-occlusion.

Most recently, Aldrian and Smith [8] have proposed a
method for the inverse rendering of faces that relies on a
linear model of facial self-occlusion. They do not aim to re-
construct the shape from the observed shading. Their model
assumes a constant incoming light distribution which corre-
sponds to considering only the first SH basis function.

1.2. Contribution

In this paper, we propose a method of fitting a morphable
model of human faces to a single image under omnidi-
rectional SH illumination while considering self-occlusion.
The use of a morphable model allows us to precompute the
effects of self-occlusion and thus consider them in the fit-
ting process.

Without self-occlusion, the radiance of a surface point
depends only on the surface normal at that point, even un-
der omnidirectional illumination. If self-occlusion is con-
sidered, however, the evaluation of the radiance suddenly
becomes computationally very expensive, because for each
surface point P and every incoming light direction ω, the
entire facial geometry needs to be looked at, and it needs
to be determined whether direction ω is occluded at point
P . That amount of computation makes determining self-
occlusion intractable in any iterative shape fitting scheme.

We encode the self-occlusion information in the dimen-
sions of the morphable model itself, and thereby avoid hav-
ing to determine that information at runtime. This provides
us with a linear function which maps shape model coordi-
nates directly to surface radiance values under a given set
of illumination coefficients. Inverting this linear function
allows us to predict a shape that implies the self-occlusion
effects observed in the input image.

Note that the actual radiance of a face under a given il-
lumination is not a linear function of vertex displacements.
We will demonstrate, however, that a linear function is a
good approximation for the small amount by which corre-
sponding vertices of a human face shift between different
faces.

2. Theory
Shape The shapes of our faces are represented through a
linear morphable model. The morphable model defines the
position sv ∈ R3 of each vertex v as follows,

sv = sµv +

N∑
i=0

qSi σ
S
i s

i
v, (2.1)

where sµv ∈ R3 is the mean position of vertex v and siv ∈ R3

is its displacement as a result of each component i of the
morphable model. The coefficients qSi ∈ R are the model
coordinates of the head while the values σSi ∈ R are the
standard deviations of the corresponding model compo-
nents. The superscript S denotes that we are referring to
shape model coordinates and standard deviations, in order
to distinguish them from the albedo coordinates and stan-
dard deviations which will be introduced later.

Shading We assume a global illumination function which
is modulated individually for each vertex. We refer to the
modulation coefficients as the generalized vertex irradiance
which is predicted from model coordinates using a linear
approximation, the local irradiance model.

Our illumination model is defined by an illumination
function L(ω) which maps directions on a sphere ω ∈ S2

to RGB light values L ∈ RGB. The space RGB is equiv-
alent to a triplet of positive real numbers. The illumination
function L(ω) is projected into SH space,

L(ω) =

B∑
l=0

l∑
m=−l

λml Y
m
l (ω) =

K∑
k=0

λkYk(ω), (2.2)

where Y ml are the real SH basis functions and λml ∈ RGB
are the illumination coefficients which characterize a spe-
cific illumination environment. Throughout this project, we
used three bands of SH (B = 2), which correspond to nine
basis functions Y ml (ω). To improve legibility, we will refer
to combinations of indices l and m as a combined index k
throughout this paper.

The radiance Rv of a surface vertex v is equal to the
integral over the light contributions from all unoccluded di-
rections ω,

Rv(ωout) = (2.3)∫
S2
Vv(ω) max(0, cos(ω, nv))F (ω, ωout)L(ω)dω,

where Rv(ωout) ∈ RGB is the exitant radiance at v in di-
rection ωout ∈ S2, Vv(ω) ∈ {0, 1} is the visibility function,
which is one for visible directions ω and zero for occluded
ones, F ∈ RGB is the bidirectional reflectance distribution
function (BRDF) and L is our illumination function. This
expression is equal to Kajiya’s rendering equation [9], ex-
cept that the effects of interreflection are neglected.

We assume Lambertian reflectiveness, so our BRDF is
equal to a constant albedo Av ∈ RGB. By applying our
definition of L (eq. 2.2), we can decompose the radiance as
follows,

Rv = Avρ̂
λ
v , (2.4)

ρ̂λv =
K∑
k=0

λkρvk, (2.5)
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ρvk =

∫
S2
Vv(ω) max(0, cos(ω, nv))Yk(ω)dω. (2.6)

We refer to ρvk ∈ R as the generalized vertex irradiances,
which measure the light contribution by each of the SH ba-
sis functions Yk to each vertex v. They are independent
of the illumination coefficients λ. The terms ρ̂λv ∈ RGB
are referred to as the specific vertex irradiances, and they
describe the actual irradiance of vertex v under a specific
illumination λ.

In the following, we will drop the subscript v when we
refer to sets of quantities for all the vertices in the mesh, and
the subscript k when we refer to the values associated with
all nine SH basis functions.

3. Setup
Local Irradiance Model We use a linear local irradiance
model Φ(qS) to predict the generalized vertex irradiances
ρ from morphable model coordinates qS ∈ RN . Φ(qS) is
inverted in our algorithm to find optimal morphable model
coordinates. It is defined as follows,

Φ : RN → RKNv

qS 7→ ρµΦ +
N∑
i=0

qSi ρ
i
Φ ≈ ρ(qS). (3.1)

The mean generalized irradiance ρµ is defined as the
generalized irradiance of the mean shape sµ. The irradiance
deformations ρi are defined as the irradiances of the unit
shapes in the linear shape model minus ρµ. A unit shape is
a shape generated by equation 2.1 where all entries of qS

are zero, except for one which is equal to one.
The computation of the generalized irradiance of a shape

is performed by evaluating the integral in equation 2.6 us-
ing Monte Carlo integration. This Monte Carlo integration
consists of rendering many orthographic shadow maps of
the head from many viewing directions ω in order to obtain
the values of the visibility function Vv(ω) and then adding
up the resulting values of the integrand.

At runtime, once a set of illumination coefficients λi has
been estimated, the local irradiance model Φ is projected
into that illumination, yielding the specific local irradiance
model Φλ. This is done by applying equation 2.5 to ρµΦ and
all ρiΦ.

Albedo Model Second, we require an illumination-free
albedo model. For that purpose we have determined the
albedo maps of 200 heads of known shape by computing
their generalized irradiance through Monte Carlo integra-
tion. We have then estimated the illumination coefficients
λ and then divided the observed vertex radiances by their
implied irradiances. Finally, we have constructed a PCA

model of those 200 albedo maps. That model is very simi-
lar to the shape model. It is defined as follows,

Av = Aµv +

NA∑
i=0

qAi σ
A
i A

i
v, (3.2)

where Aµv is the mean albedo of vertex v and Aiv are the
principal components of the albedo model for v.

Initial Shape and Pose Our method is initialized by per-
forming a landmark fit in order to estimate the correspon-
dence between the vertices of the morphable model and the
pixels of the image. That landmark fit consists of finding the
pose of the face and an initial shape that maps a number of
given landmarks to their known 2D positions in the image.
The fit is performed using the L-BFGS optimization algo-
rithm as described by Knothe [2]. No illumination model is
used during this intialization step.

The pose is given by a 4 × 4 view matrix W , such that
(s̃x, s̃y) is the image position corresponding to world space
position s, with,

s̃x = x0 +
ŝx
ŝw
, s̃y = y0 +

ŝy
ŝw
, ŝ = W


sx
sy
sz
1

 .

(3.3)

4. Method

Our method aims to estimate a new set of shape coor-
dinates qS′ which better explain the shading in the input
image than the initial shape coordinates qS . For that pur-
pose, we also require estimates of the illumination coeffi-
cients λml and albedo coefficients qAi .

Our Algorithm consists of the following three steps:

1. Illumination Fit

2. Albedo Fit

3. Shape Fit

All three steps are linear least-squares problems. They are
solved by performing an alternating least squares optimiza-
tion. The illumination fit is repeated after the albedo fit
since it is far quicker than the albedo fit or the shape fit.
We have found through our experiments that only negligible
changes to the shape take place after only three iterations of
the above four steps.

As initial values, we assume the mean albedoAµ and the
generalized irradiance corresponding to the initial shape,
i.e. Φ(qS).
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4.1. Illumination

We begin by estimating the illumination coefficients.
This is done by solving a linear system of equations in a
least squares sense.

The illumination coefficients λk are determined by solv-
ing the following set of equations in a least squares sense
for all valid vertices v,

R̄v = Aµv

K∑
k=0

λkρvk, (4.1)

where R̄v are the vertex radiances observed in the image. A
vertex is considered valid for the illumination fit if it is vis-
ible and if its variance in both albedo and generalized irra-
diance is below certain threshold values σAt and σρt . Those
variances have been determined from the same set of 200
example heads also used for the computation of the albedo
model and the linear local irradiance model Φ.

4.2. Albedo

Once an initial estimate of the illumination has been de-
termined, we proceed to approximate the albedo. This is
done using our albedo model. Although the albedo model
is defined for all vertices in the face, the albedo fit is per-
formed multiple times, once for each facial segment. The
segments define the following facial areas: skin, eyes, eye-
brows, nostrils and lips. Breaking up the albedo model in
this way increases its expressiveness, since the albedo maps
of those segments can then be fitted independently of each
other.

The albedo estimation consists of solving the following
linear least squares problem for the albedo model coeffi-
cients qA,gi in each segment g,

wgv(R̄v − µAv ρλv ) = wgvρ
λ
v

NA∑
i=0

qA,gi σAi u
A
v,i, (4.2)

0 = τAqAi , (4.3)

where the weight wgv ∈ R describes the amount to which
vertex v belongs to segment g. The sum of wgv over all seg-
ments is equal to 1 at each vertex. The first term provides
an equation in RGB for each valid vertex v and it aims to
explain the colors observed in the image. A vertex is con-
sidered valid for the albedo fit if its variance in generalized
irradiance lies below the treshold variance σρt . This elim-
inates vertices of high geometric uncertainty. The second
term is a regularization term and it provides NA equations,
one for each albedo model dimension, and it is intended to
enforce a solution which is considered likely by the model.
The number τA is a regularization constant and it allows
for a trade-off between reconstruction precision and model
prior.

The estimated coefficients are used to evaluate the vertex
albedo values Agv ∈ RGB for each segment using equation
3.2. They are then interpolated using the segment weights
wgv to obtain the final vertex albedo values Av .

4.3. Shape

Here, we invert the local irradiance model Φ(qS) defined
in equation 3.1 in order to obtain a set of shape coordinate
displacements δqi so that the displaced shape space coordi-
nates qS′ = qS + δq correspond to a mesh that better ex-
plains the shading in the input image. At the same time, we
also need to preserve the model-to-image correspondence
established by the initial landmark fit. This is accomplished
by requiring the image plane shift of certain vertices to be
close to zero through an additional correspondence term.

The shape fit consists of solving the following linear sys-
tem of equations for δqi,

R̄v −R0
v =

N∑
i=0

ρiΦvδqi, (4.4)

0 = τCwCv

N∑
i=0

W̄σSi s
i
vδqi, (4.5)

τSq0
i = −τSδqi. (4.6)

The first term (4.4) represents one equation in RGB for
each vertex, or three equations per vertex in R. Its pur-
pose is to find a shape space shift δq that better explains
the observed shading. The left hand side describes the color
change required for vertex v, while the right hand side de-
scribes the color change as a function of δqi. R0

v is the
vertex radiance implied by the current shape under the esti-
mated illumination and albedo.

The second term (4.5) is referred to as the correspon-
dence term and it represents two further equations in R for
each vertex. It aims to limit the amount by which vertex
v shifts in the image plane as a result of δqi. Since the
lateral positions of all vertices are provided only by the ini-
tial correspondence fit, we need to take care not to distort
that initial correspondence. The collective correspondence
weight τC allows us to form a tradeoff between shading
reconstruction accuracy and correspondence preservation.
The individual weights wCv are equal to one for all land-
mark vertices and zero for all others. Since the correspon-
dence has only been established at the landmarks, all other
vertices are allowed to move laterally in the image plane.
The matrix W̄ is the upper left 2× 3 submatrix of the view
matrix W , as defined in equation 3.3.

The final term represents a set of N regularization equa-
tions, and it serves to keep the resulting shape space co-
ordinates q1

i = q0
i + δqi close to zero, in order to ensure a

resulting shape that is close to the mean and thus considered
likely by the morphable model.
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5. Experiments
In the following, we will describe a number of experi-

ments performed to evaluate our method.
The first part, section 5.1, serves to validate the approxi-

mation of facial irradiance as a linear function of morphable
model coordinates. In the second part, section 5.2, we test
the ability of the complete algorithm to recover the shape
from images 5.2.

5.1. Irradiance Mapping Test

We first prove the validity of our local irradiance model
Φ(qS). For that purpose we work on a set of 60 test faces
sampled from the morphable model according to its statis-
tical distribution.

Let qS ∈ RN a set of coefficients corresponding to one
test face. The vertex positions sv ∈ R3 of all heads have
been computed as shown in equation 2.1. For each head,
its explicit generalized irradiance ρref has been determined
using Monte Carlo integration.

The purpose of this first experiment is to prove that the
generalized irradiance ρ can be approximated as a linear
function of shape coordinates qS using our mapping func-
tion φ. The irradiance estimates ρest of all 60 test faces have
been determined using φ and compared to the explicit ir-
radiances ρref of the heads. We have defined the following
reconstruction error:

e(ρ) =

Nv∑
i=0

|ρv − ρref
v |, (5.1)

where | · | is the euclidean distance in RK , the space of SH
coefficients, and Nv is the number of vertices in the mesh.

The reconstruction error e(ρest) has then been compared
to the error e(ρµφ) implied by using the mean irradiance ρµφ
as an estimate. The error of the mean is on average 6.86
times greater than the error of the reconstruction. A his-
togram of the results is shown in fig. 1.

5.2. Shape Recovery

For the following experiment, we have generated render-
ings of 17 human heads under four light probes as illumina-
tion environments. The reflectance has been assumed Lam-
bertian and self-occlusion has been considered by means of
Monte Carlo integration. The 2D positions of the same set
of anchor vertices as above have then been used as land-
marks to determine pose and an initial set of morphable
model coefficients. The shape corresponding to those co-
efficients serves as the input to our algorithm.

We have also constructed two versions of the irradiance
function Φ, one that considers self-occlusion and one that
does not. The algorithm has been applied to all input heads,
once with the original Φ function, and once with a version
where self-occlusion has been neglected.
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Figure 1: Histograms of the generalized irradiance error
over 60 heads. We compare the error of our linear irradiance
model (green) to the error when assuming the irradiance of
the mean head (red). Note that our linear model provides a
far better approximation than the mean irradiance. The irra-
diance can not be measured in any meaningful units, since
it consists of arbitrary RK values.

The following parameters have been used: τA = 20,
τC = 0.1, τS = 0.5 and K = 9. The colors have been
defined in the range [0, 1], with (0, 0, 0) being black and
(1, 1, 1) being white. Distances were measured in µm. The
face mesh was composed of Nv = 33, 334 vertices. The
albedo model consisted of NA = 200 components and the
shape model of N = 300 components.

The resulting shapes have then been compared to the
ground truth shapes in both the depth maps and the nor-
mal maps as seen by the camera. For the depth comparison,
we have centered each depth map at its mean depth, since
the absolute depth can not be inferred precisely from a pho-
tograph. For the depth comparison, we have compared the
mean absolute values of the per-pixel depth differences of
both centered depth maps. For the orientation comparison,
we have measured the mean absolute value of the angle be-
tween the normals at corresponding pixels of the normal
maps. The comparison was limited to skin pixels, i.e. the
eyes, nostrils, mouths and eyebrows have been neglected.

without self-occlusion with self-occlusion
depth (mm) 2.823 2.542

angle (◦) 9.621 8.643

Table 1: Mean reconstruction errors. The values have been
averaged over all relevant vertices of all 17 faces under all
four illuminations.

We have found that for synthetic images, the surface ori-
entation of the resulting shapes exhibits a clear improve-
ment when self-occlusion is considered. The depth error is
also reduced, albeit to a lesser degree. The results are dis-
played in fig. 2 and table 1.

We have also reconstructed a number of faces from real
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Figure 2: Histograms of reconstruction improvement when
self-occlusion is considered.

photographs from the AFLW database [10]. The results are
shown in fig. 4.

6. Summary and Conclusions

We have demonstrated a novel method of extracting the
shape of a face from a single photograph under unknown
illumination and albedo that considers self-occlusion. Our
method is able to predict the effects of self-occlusion using
self-shadowing information encoded in the dimensions of
a morphable model of faces. It consists of a sequence of
linear least-squares problems each of which can be solved
within less than one minute on contemporary hardware,
even though the effects of self-occlusion are considered.
We have shown that our method yields a significant im-
provement over a reconstruction that does not consider self-
occlusion.

Future work in this area will need to find a way of
combining our method of considering self-occlusion with
more expressive, non-Lambertian reflection models. This
will probably also mean that the linearity of our approach
will have to be sacrificed, since the high-frequency nature
of specular reflections makes them difficult to represent as
global functions of shape.
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Figure 3: Faces extracted from synthetic images demonstrating the effect of considering self-occlusion. Input image (left),
reconstructions without and with considering self-occlusion (middle) and the angular errors of the two reconstructions (right).
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Figure 4: Faces extracted from real photographs from the AFLW database. Input image (left) and reconstruction (right).
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