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We present a method to compute the conditional distribution of a statistical shape model given partial
data. The result is a ‘‘posterior shape model’’, which is again a statistical shape model of the same form
as the original model. This allows its direct use in the variety of algorithms that include prior knowledge
about the variability of a class of shapes with a statistical shape model. Posterior shape models then pro-
vide a statistically sound yet easy method to integrate partial data into these algorithms. Usually, shape
models represent a complete organ, for instance in our experiments the femur bone, modeled by a mul-
tivariate normal distribution. But because in many application certain parts of the shape are known a pri-
ori, it is of great interest to model the posterior distribution of the whole shape given the known parts.
These could be isolated landmark points or larger portions of the shape, like the healthy part of a path-
ological or damaged organ. However, because for most shape models the dimensionality of the data is
much higher than the number of examples, the normal distribution is singular, and the conditional dis-
tribution not readily available. In this paper, we present two main contributions: First, we show how the
posterior model can be efficiently computed as a statistical shape model in standard form and used in any
shape model algorithm. We complement this paper with a freely available implementation of our algo-
rithms. Second, we show that most common approaches put forth in the literature to overcome this are
equivalent to probabilistic principal component analysis (PPCA), and Gaussian Process regression. To
illustrate the use of posterior shape models, we apply them on two problems from medical image anal-
ysis: model-based image segmentation incorporating prior knowledge from landmarks, and the predic-
tion of anatomically correct knee shapes for trochlear dysplasia patients, which constitutes a novel
medical application. Our experiments confirm that the use of conditional shape models for image seg-
mentation improves the overall segmentation accuracy and robustness.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Statistical shape models have become an indispensable tool in
medical image analysis. In essence, statistical shape models can be
seen as a probability distribution (usually a normal distribution),
which assigns the anatomically normal shapes of an anatomical
structure a high probability, while pathological and other shapes
that do not correspond to the modeled anatomical structure are
assigned a low probability. Their power and versatility can be ex-
plained by the fact that they provide a quantitative answer to two
fundamental questions in medicine: (1) How does a normal in-
stance of a given anatomical structure look like? (2) Is a specific ana-
tomical structure normal or pathological? Statistical shape models
thus allow us to develop algorithms whose solution space is re-
stricted to anatomically normal shapes. Such a strong prior on
the solution makes the algorithm more robust, leads to easier opti-
mization problems, and even allows us to infer a solution when
only partial data is given. Consequently, applications such as
implant design, surgery planning, or even medical image segmen-
tation, for which it is clear that the result has to be a normal shape,
have been shown to greatly benefit from the use of shape models
(Heimann and Meinzer, 2009). In this paper we show how we can
build a statistical shape model that even better restricts the solu-
tion space for the case when a part of the solution shape is already
known. The new model answers the question: Given a part of an
anatomical structure, how does a normal instance of the full shape
look like? Knowledge of a part of the structure is often immedi-
ately available in practice. In surgery planning for example, a part
of a shape may be missing due to a trauma or tumor, but the
remaining part of the shape is known to be intact. It is thus a priori
known that the solution needs to correspond to the shape of the
part that is still intact. Another typical scenario is that a number
of landmark points are available, which need to be matched by
an algorithm.

In the following we sketch the main idea behind our method: A
PCA-based statistical shape models is a generative model of the
form:

s ¼ sðaÞ ¼ lþ Qa; ð1Þ
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where l 2 Rp is a vector that represents the mean shape and
Q ¼ ðq1; . . . ;qnÞ 2 Rp�n is a matrix of principal components qi, de-
rived from training examples. By assuming that the coefficients
a 2 Rn in (1) follow a standard normal distribution pðaÞ � N ð0; InÞ,
a probability distribution pðsÞ � N ðl;QQ TÞ is induced on the shape
space. For a known, given part of a shape sg 2 Rq, we wish to com-
pute a new (normal) distribution pðajsgÞ � N ðg;KÞ. Using this dis-
tribution as a model for the coefficients a in (1) yields a new
shape model, which represents shapes whose fixed part corre-
sponds to sg. The new model, whose mathematical form is identical
to that of the original model, can thus be used to strengthen the
prior assumptions for any method that uses shape models.

In most shape models, the number of examples n is less than the
dimensionality of the shape space p. This makes the covariance
matrix QQT and therefore the normal distribution N ðl;QQ TÞ sin-
gular and the conditional distribution is more difficult to compute
than it seems at first glance. We follow the most common ap-
proach from prior work, which is to regularize the covariance ma-
trix, or the part of it corresponding to the given data, by adding a
small multiple of the identity matrix r2 I. This can be interpreted
as modeling the noise or deviation from the model in the partial
data. We show the connection of this approach to probabilistic
principal component analysis (PPCA) and Gaussian process
regression.

We demonstrate two prototypical application of this model in
medical applications. The first application targets an atlas-based
segmentation of the femur bone from CT images using statistical
model fitting. Here, a sparse set of landmark points is used to con-
strain the shape space, and thus simplify the actual fitting task. The
second application targets operation planning for trochlear dyspla-
sia patients. Trochlear dysplasia is a deformity of the knee that is
treated surgically by remodeling the joint surface. Our application
demonstrates how the shape model can be used to infer the normal
shape of the pathological region from the intact part. This consti-
tutes a novel application of (posterior) shape models for surgery
planning.

In summary, we have the following main contributions: (1) We
show how to efficiently compute the conditional distribution
p(ajsg) and the resulting posterior shape model, which is again a
statistical shape model of the form (1). (2) We show the connection
of this method to Probabilistic PCA (Tipping and Bishop, 1999) and
Gaussian Process regression Rasmussen and Williams (2006). (3)
We provide novel applications of our method to two problems in
medical image analysis. (4) We provide a C++ implementation, as
an integrated part of the freely available statismo library (Lüthi
et al., 2012).1
1.1. Related work

Since their invention, statistical shape models have been used
to infer the full shape from partial or ‘‘sparse’’ data. Often, only
the maximum a posterior solution (MAP), i.e. the single most prob-
able shape given the partial data is sought. Of the many papers
computing the MAP, we only mention Blanz and Vetter (2002),
as it is closest to this work. It uses a regularization term of the form
r2I to compute a conditional distribution, but only computes the
MAP and not the full posterior.

We are interested in computing this posterior model. In previ-
ous work (Albrecht et al., 2008), we derived a statistical model
matching the given data using a heuristic method. In Lüthi et al.
(2009), a similar model was more rigorously derived as the condi-
tional probability of a PPCA formulation (Tipping and Bishop, 1999)
1 available at: http://www.statismo.org.
of the statistical model given the partial data. The derivation of the
conditional models we present here is similar, but it simplifies the
formulation by separating the modeling of the partial data and the
concept of PPCA models.

Other research groups have also investigated partially deter-
mined shape models. In Liu et al. (2004), canonical correlation
analysis (CCA) is used to predict an unknown or diseased part of
a shape from the healthy part. In Blanc et al. (2009) the given data
is not a part of the shape, but given in the form of ‘‘surrogate vari-
ables’’ such as weight, sex, or age of a patient. In Blanc et al. (2012),
this model is extended to also include partial shape data. In Blanc
and Szekely (2012), the confidence of the reconstruction is evalu-
ated, with a focus on including also the uncertainty involved in
estimating correspondence between the given data and the model.
These last two papers mention conditional shape models in the
form we consider here in passing, but do not discuss the technical
details or compute the actual shape model of the posterior
distribution.

De Bruijne et al. (2007) compute a conditional shape model of a
human vertebra given its neighboring vertebrae. They compute the
conditional distribution with a regularization term of the form r2I
and use the posterior shape model to classify fractures of the ver-
tebrae. This posterior model seems very similar to our approach,
but no details of its computation, especially for datasets larger than
2D vertebra shapes are given. In Baka et al. (2010) and Tomoshige
et al. (2012) the simple regularization term r2 I is replaced with a
more general matrix reflecting the uncertainty for each given value
individually. No explicit form of the posterior shape model is given
in these papers. Their idea of replacing the regularization term can
be employed in our approach, if individual uncertainty estimates
for the given values are available. For our experiments, however,
we use the standard regularization term.

Metz et al. (2010) use a combined model of shape and motion to
infer cardiac motion from given shapes. They do not use a regulari-
zation term but compute the conditional distribution ‘‘after apply-
ing PCA’’, which amounts to simply projecting the given data onto
the span of the example data and ignoring how far it actually is from
this span. No posterior model is computed. Petersen et al. (2011) aim
at computing the conditional distribution of a combined model of
shape and rigid alignment, given partial data like landmark points.
By including the rigid alignment, their conditional model becomes
a non-linear manifold. This is then again linearized using a Laplace
approximation (see Bishop (2006) for instance), in order to draw
samples from the distribution. While this method has the advantage
of incorporating the alignment into the model, no analytic expres-
sion of the model and no explicit posterior shape models are given.

To sum up, while all of these papers introduce some form ‘‘con-
ditional model’’, the detailed derivation, explicit and efficient com-
putation of the posterior shape model in the form of a standard
shape model, are novel.

The viewpoint of interpreting a shape model as a Gaussian pro-
cesses has been put forward by Joshi et al. (1997). A very compre-
hensive overview of their group’s approach to shape modeling can
be found in Grenander and Miller (1998). The use of Gaussian Pro-
cess Regression for incorporating additional prior information, or
the computation of conditional shape modes has to the best of
our knowledge not been discussed, neither the connection to PPCA.

Regarding the applications we present in this paper, the surgical
treatment of trochlear dysplasia is presented in Verdonk et al.
(2005). In Pfirrmann et al. (2000) a statistical study of trochlear
dysplasia is performed based on manual measurements of a few
selected geometric criteria. The use of statistical shape model in
this area is novel.

Statistical shape models have been used in the context of image
segmentation since their invention, see Heimann and Meinzer
(2009) for a recent and extensive review. In the terminology of

http://www.statismo.org
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the review, we use a volume-to-volume atlas matching scheme
with a strict shape constraint to achieve segmentation. In this
sense it is similar to the approach introduced by Davatzikos et al.
(2002). While Cootes and Taylor (2001) included landmark posi-
tions, they simply added a penalty term and did not use a condi-
tional model.
2. Background

In this section we introduce the basic concept underlying PCA-
based statistical models. We then discuss posterior models and
show the connections to Probabilistic PCA and Gaussian Process
regression. While our method can be applied to any PCA-based sta-
tistical model, for ease of exposition and visualization, we will fo-
cus our discussion on PCA-based shape models, which includes the
popular Active Shape Model (Cootes and Taylor, 1992) and Morph-
able Model (Blanz and Vetter, 1999) as special cases.
2.1. PCA models

Statistical shape models represent a class of shapes based on a
set of representative example shapes. Let us assume that n 2 N

example shapes are given. In order to treat these shapes as vectors,
they need to be brought into correspondence. While this is an
important step in the construction of shape models, we assume
that the reader is familiar with this concept. A short overview of
how we interpret it can be found in Appendix A. Once the shapes
are in correspondence, each shape can be represented as a vector
si 2 Rp; i ¼ 1; . . . ;n. It is assumed that the class of shapes is a linear
space in Rp and shapes can be formed by linear combinations of the
example shapes. This allows the direct calculation of the sample
mean l ¼ 1

n

Pn
i¼1si and covariance matrix R ¼ 1

n

Pn
i¼1ðsi � lÞ

ðsi � lÞT of the shape vectors. Statistically, the class of shapes is
then typically modeled by the multivariate normal distribution
N ðl;RÞ. A principal component analysis (PCA), which amounts to
an eigenvalue decomposition of the covariance matrix R = UD2UT

permits a compact representation of all the shapes in the model as:

s ¼ sðaÞ ¼ lþ UDa ¼: lþ Qa: ð2Þ

This representation is convenient because the matrix U, which con-
tains the eigenvectors or ‘‘principal components’’ of R is orthonor-
mal. Each eigenvector represents an independent characteristic
shape variation of the shape class and the corresponding eigen-
values in D2 quantify their variance. Because the eigenvalues and
their corresponding eigenvectors are typically ordered from largest
to smallest, the first few principal components represent the ‘‘main
modes of variation’’ of the shape class.

In principle we have U;D;Q 2 Rp�p, where p is the dimensional-
ity of the shape vectors si. Typically, p is the number of points used
in the discretization times the space dimension. For most shape
models used in practice, p is much larger than the number of exam-
ple shapes n. Therefore, the rank of R is never larger than n. Thus, its
last p � n eigenvalues are zero, and the matrices can, without loss of
information, be truncated to U;Q 2 Rp�n and D 2 Rn�n.

If l and R are estimated as the sample mean and covariance,
the rank of the covariance matrix diminishes by one, so we have
at most n � 1 non-zero eigenvalues, and some authors even choose
to omit the smallest ones, which represent the least variance of the
model.

The shape models described here are often called ‘‘PCA models’’.
However, the use of PCA is not essential. In principle, Eq. (2) simply
describes a generative linear model and other combinations of the
vector l and the matrix Q that model the variability of the class of
shapes are possible.
If the coefficient vectors a are distributed according to N ð0; InÞ,
the shapes s(a) = l + Qa are distributed according to

N ðl;QQ TÞ ¼ N ðl;RÞ: ð3Þ
2.2. The singular distribution

At first glance, it seems as if the model (3) defines a valid prob-
ability distribution on the space of all possible shape deformations
Rp. Upon closer inspection however, it becomes apparent that all
the probability mass is concentrated on the n-dimensional space
spanned by the columns of Q, which is the span of the example
shapes of the model. In other words, because R does not have full
rank if n < p, the distribution N(l, R) is singular. In many applica-
tions of statistical shape models, it suffices to work entirely in
the span of the examples. For other applications however, like
the conditional distributions computed in this paper, this will not
be sufficient.

A small hypothetical experiment can illustrate why the singular
distribution N ðl;RÞ is not sufficient to model shapes outside of the
span of the examples. Suppose we leave out one of the n example
shapes and build the shape model from the remaining n � 1 exam-
ples. Because the left out example is from the same class as the
other shapes, it will, as a vector in Rp, be very close to the remain-
ing shapes, but it will in general not lie exactly in their span. There-
fore, the probability density function of N ðl;RÞ assigns a value of 0
to this shape, although we know that it is in fact a member of the
object class that the model should represent, and would intuitively
expect a high value.

In their paper on covariance estimation, Schäfer and Strimmer
(2005) offer a good theoretical explanation for this problem. The
sample covariance QQT is an estimator for the true covariance of
the object class we wish to model. Unfortunately, if the number
of examples n is smaller than the dimension of the space p, it is
a very poor estimator of the true covariance: It is singular and as-
signs a probability density of 0 to most samples from the true dis-
tribution, like the left out example from above.

Many authors treat this problem by considering not the shape
vector but its projection onto the span of the other examples, e.g.
Metz et al. (2010). This projection would then have a high value
in the probability density of N ðl;RÞ. However, its distance from
the span is ignored. In some scenarios this may be appropriate,
in others it can lead to gross misinterpretations.

Therefore, the aim is clear: We need to employ a statistical
model that assigns a high probability to shapes that are in or near
the span of the examples and a low, but not zero, probability to
shapes further away. We begin by considering the problem for par-
tial data.
3. Posterior PCA models

Our aim is to compute conditional distributions given partial
information about the shapes. This partial information can for in-
stance be a (healthy) part of a bone, which shall be used to predict
other missing or damaged parts. Or the partial information can
consist of a few isolated landmark points that have been supplied
by a user to aid in fitting the model to difficult data. For now, we
assume that this partial information is given in the form of q < p
known entries in the shape vector s, typically we have q > n. We
will denote the given entries as sg 2 Rq. Similarly we can define
the sub-vector lg 2 Rq and sub-matrix Q g 2 Rq�n by selecting
those entries and rows from the model’s full l and Q that corre-
spond to the given entries.

As outlined above, unless the given data is directly derived from
the example data for the model, it will in general not lie exactly in
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the span of the model, i.e. there is no a such that sg = lg + Qga and

the singular distribution N ðl;RÞ or rather N lg ;Q gQ T
g

� �
cannot be

used to interpret the partial shape directly. Therefore, we propose
to explicitly model the distance of the data set sg from the model
space with a ‘‘noise’’ or ‘‘slack’’ variable e � N ð0;r2IqÞ with a small
variance of r2. I.e. we represent the given data as:

sg ¼ lg þ Q gaþ e: ð4Þ

These shapes are therefore distributed according to:

N ðlg ;Q gQ T
g þ r2IqÞ: ð5Þ

This approach of adding e can be considered standard. In terms of
Schäfer and Strimmer (2005) it is an improved covariance estima-
tion by adding the shrinkage term r2Iq. In other areas of mathemat-
ics the same approach is known as ridge regression, Tykhonov
regularization etc. It has been used in connection with statistical
shape models almost since their inception. In connection with con-
ditional distributions it is used by the papers mentioned in the Re-
lated Work Section 1.1. A strategy for choosing the variance
parameter r2 will be given in Section 3.3. The approach can be gen-
eralized by allowing other distributions for e that model the noise or
deviation more specifically, e.g. individually for each point
(Tomoshige et al., 2012; Baka et al., 2010). For ease of exposition,
we use the standard uniform shrinkage term here, but all formulas
can be directly generalized by replacing the identity matrix.

Eq. (5) describes a non-singular (!) distribution on the space Rq

of all partial data vectors sg, which allows us to compute with stan-
dard methods the conditional distribution p(ajsg) of the model
parameters a, given the partial information sg. Because the shape
parameters represent full shapes s(a) this also defines the condi-
tional distribution p(sjsg) of the full shapes given the partial data.

Because the distribution of the parameters a and the condi-
tional distribution of the observed partial data given the parame-
ters are both normal,

pðaÞ ¼ N ð0; InÞ; ð6Þ

pðsg jaÞ ¼ N ðlg þ Q ga;r2IqÞ; ð7Þ

the conditional distribution p(ajsg) is again a multivariate normal
distribution which can be calculated using Bayes’ rule. The calcula-
tions leading to the explicit form of the mean and covariance matrix
of this distribution are rather lengthy (For a full derivation see e.g.
Bishop (2006), Chapter 2.3) Here, we present the final expression:

pðajsgÞ ¼ N M�1Q T
gðsg � lgÞ;r

2M�1
� �

ð8Þ

¼: N ðg;KÞ ð9Þ
where M ¼ Q T

g Q g þ r2In: ð10Þ

For the full shapes s(a) defined in Eq. (2), we therefore have the pos-
terior distribution:

pðsjsgÞ ¼ N ðlþ Q g;Q K Q TÞ ¼: N ðlc;RCÞ: ð11Þ

Written out, we have the posterior mean:

lc ¼ lþ Q ðQ T
g Q g þ r2InÞ

�1
Q T

g ðsg � lgÞ ð12Þ

and covariance:

Rc ¼ r2Q ðQ T
g Q g þ r2InÞ

�1
Q T : ð13Þ
3.1. Correspondence and alignment

Mathematically, this seems very straight-forward but a few
clarifications are in order. In order to select the appropriate sub-
vector and matrix lg, Qg, the given points need to be in correspon-
dence with the shapes. This means that we need to know which en-
tries in sg belong to which entries in s in order to select the correct
entries and rows from l, Q. For more details on correspondence,
see Appendix A.

Furthermore, we assume that the given points are correctly
aligned to the shape model, because in Eq. (8) we model only shape
variations and not variations in rigid alignment. These prerequi-
sites are not always given in general, correspondence and align-
ment of the given points to the shape model may need to be
computed beforehand. The most obvious approach is to do this,
is to fit the model to the given data, i.e. to find the optimal rigid
alignment and model parameters so that the fitted model shape
(almost) coincides with the given data. This raises another prob-
lem: As Baka et al. (2010) point out, the alignment of the given data
should be consistent with that of the original model. Therefore, as
they propose, we realign the original model based only on the parts
of the shape that correspond to the given data sg. This alignment
may be sub-optimal with respect to the full shapes, but is consis-
tent with the given data. A more mathematical discussion of this
problem is given in Section 4.3.

3.2. Principal components of the posterior model

The distribution of the conditional shape model Eq. (11) defines
a multivariate normal distribution of shapes, represented by vec-
tors in Rp. In this sense, it is simply a statistical shape model. We
have explicit representations of the mean and covariance of this
distribution, lc and Rc. In many applications, the mean is all we
are interested in, because it represents the most likely shape given
the partial data. Often though, we would like to visualize and rep-
resent the shape model in terms of its most prominent modes of
variation, i.e. its principal components. For this we can perform
an additional eigenvalue decomposition of the covariance matrix

Rc ¼ r2QM�1Q T : ð14Þ

In principal, the eigenvalue decomposition could be computed di-
rectly, but this is a (p � p) matrix, which may be very large (for in-
stance 1012 entries for a typical shape model), and the
decomposition may not be tractable. With the specific expression
for Q = UD from Eq. (2) however, we can reformulate and perform
a PCA of the much smaller inner matrix Ri 2 Rn�n:

Rc ¼ U r2D M�1 D|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼:Ri¼UiD

2
i UT

i

UT ð15Þ

to arrive at the final PCA:

Rc ¼ ðUUiÞ D2
i ðUiUÞT ð16Þ

more efficiently. The new matrix of principal components are then
given as Qc = (UUi)Di and the shapes of the conditional model can be
represented as sc(a) = lc + Qca.

3.3. The choice of the parameter r2

As outlined in the previous sections, the parameters r2 models
the deviation of the given data sg from the model. This deviation
may be due to noise in the data, but even for noise-free data it is
necessary to avoid a singular distribution. In some cases, we can
have a clear notion of what this parameter should be, e.g. the ex-
pected precision of user-placed landmarks in millimeters. In other
cases it is hard to derive exact values for the parameters. For these,
we derive a maximum likelihood estimation from the data.

Suppose we have an example data set sg that we know to be
part of a normal member of the object class modeled by the origi-
nal statistical model. Then we can fit the model to this data to find
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the best approximation of this data set within the model span ŝg .
Then, according to Eq. (7) the likelihood of r2 is:

LðrÞ ¼ 1
z

exp ðsg � ŝgÞTr�2Ipðsg � ŝgÞ: ð17Þ

Maximizing with respect to r2 gives the maximum likelihood
solution:

r2 ¼ 1
q
ksg � ŝgk2

2; ð18Þ

the mean squared residual between sg and its best approximation in
the model. This makes sense because, knowing that sg is a member
of the modeled object class, the residual represents the deviation
we will most likely have to expect for other members. Obviously,
using more examples gives a better estimation. For m examples
we get, assuming independence:

r2 ¼ 1
mq

Xm

i¼1

ksgi � ŝgik2
2: ð19Þ
4. Alternative views: PPCA and Gaussian process regression

In this section, we give two alternate views of the same prob-
lem. First we show the connection of our approach to probabilistic
PCA (PPCA), which essentially extends the idea of modeling the
deviation from the model span to the complete data sets s. Then,
we show the connection to Gaussian process regression, which al-
lows us to treat the problem of inferring the missing parts of a
shape as a standard regression problem.

4.1. PPCA

In Eq. (4) the given information sg was modeled by a linear
shape model plus a noise or slack variable e � N ð0;r2IqÞ. It is pos-
sible to model not only the partial shape but all complete shapes s
in a similar manner, using a noise variable x � N(0, q2Ip):

s ¼ lþ Q aþx: ð20Þ

This leads to a generalization of PCA introduced as Probabilistic PCA
(PPCA) by Tipping and Bishop (1999) or Sensible PCA by Roweis
(1998). This is a direct generalization of Eq. (2), as by choosing a
variance of q2 = 0, we arrive at the standard PCA formulation.

PPCA can be motivated by assuming that every data set s may
be afflicted by noise modeled by x � N(0, q2Ip), which seems to
be a reasonable assumption in medical imaging. The distribution
of the model parameters is still assumed to be a � N(0, q2In), and
therefore the shape conditioned on the parameters is distributed
as follows:

pðsjaÞ ¼ N ðlþ Qa;q2IpÞ: ð21Þ

For q2 – 0 PPCA therefore defines a non-singular distribution

pðsÞ ¼ N ðl;QQ T þ q2IpÞ: ð22Þ

on the space of all shapes Rp, which can be advantageous in many
situations. On the other hand, this forces us to choose the variance
parameter q2. This parameter may or may not be the same as the
parameter r2 in Eq. (4). Both parameters model the amount of
noise, or deviation from the model space. q2 for the training data
s, and r2 for given partial data sg. A maximum likelihood estimation
for both parameters can be computed as described in Section 3.3,
where, for the parameter q2 a leave-one-out experiment with the
model’s input data can be performed, yielding the maximum likeli-
hood estimator:

q2 ¼ 1
np

Xn

i¼1

ksi � ŝik2
2: ð23Þ
In particular, for noise-free example data we can choose q2 = 0 and
r2 > 0, which brings us back to the formulation introduced in the
previous section.

In the PPCA model, as before before, Q can be any (p � n)-matrix
describing the variability of the shapes. But typically it is the ma-
trix of principal components computed by PCA. As somewhat of
a technicality however, by computing a maximum likelihood esti-
mator for Q from Eq. (22), we arrive not at the standard form
Q = UD from Eq. (2) but at the slightly modified version

Q ML ¼ U ðD2 � q2IpÞ
1
2; ð24Þ

see Tipping and Bishop (1999); Roweis (1998) for details. While the
PPCA model defines a non-singular distribution on the whole space
Rp, it is just as compact as a standard PCA model, because we still
only need to store the (small) matrices U and D and the additional
value q2. Regarding the computation of the principal components of
the posterior model described in the previous section, the inner ma-
trix from Eq. (15) takes the slightly more complicated form:

Ri ¼ r2ðD2 � q2InÞ
1
2M�1ðD2 � q2InÞ

1
2: ð25Þ
4.2. The Gaussian process view

For many application, it is convenient to view statistical shape
models as a Gaussian Process that defines probabilistic model over
the displacements from a mean shape. This interpretation of statis-
tical shape models goes back at least to Grenander and Miller
(1998). Unfortunately it has not been widely adopted in the com-
munity, despite the fact that it provides a conceptually clean view
on shape models and allows for the application of the many pow-
erful techniques and results from statistics and machine learning
(see e.g. Rasmussen and Williams, 2006).

In order to formulate the Gaussian Process view, we need to
change the notation slightly. So far we have assumed that a shape
is represented as a vector s 2 Rp. For the Gaussian Process view, we
interpret these vectors as a representation of discrete functions,
defined on a finite domain X = (x1, . . ., xN). More specifically, as
we have assumed correspondence between all the example vec-
tors, we can define the function

si : X! Rd

such that siðxjÞ 2 Rd refers to the jth point of the ith example shape.
The mean vector l can be interpreted as a the mean function

l : X! Rd

lðxÞ ¼ 1
N

XN

i¼1

siðxÞ
ð26Þ

and the covariance matrix becomes the covariance function

R : X�X! Rd�d

Rðx; x0Þ ¼
XN

i¼1

ðsiðxÞ � lðxÞÞðsiðx0Þ � lðxÞÞT :
ð27Þ

As for the normal distribution, the mean and covariance functions
uniquely define the Gaussian Process GPðl;RÞ (Rasmussen and Wil-
liams, 2006). From the covariance function (27) we see that a shape
model actually defines a model over displacements ui(x) :¼ si(-
x) � l(x). Identifying the domain X with the model mean l, this
yields the interpretation of shape models as a zero-mean Gaussian
Process model, GP(0, R) over displacement fields, defined on the
mean shape l.



Fig. 1. A surface reconstruction of a segmentation obtained by thresholding a CT
image. The pelvis cannot be separated from the femur (right) and the surface shows
holes at the condyles (left).
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4.2.1. Gaussian process regression
Using the interpretation of statistical models as a Gaussian Pro-

cess, the prediction of a missing part of the shape becomes a stan-
dard regression problem. Let s : X! Rd be a shape from our model
and assume that the shape is given at a subset of the points Xg �X
only. Additionally, we assume that we do not observe the shape di-
rectly but only a noisy versions, t(xi) = s(xi) + e, with e ¼ N ð0;r2Þ.
Our given data is then tg = {(xi, t(xi))jxi 2Xg}, and our goal is to infer
the complete function s from tg. Under the assumption that s is a
Gaussian process and that the noise e is uncorrelated Gaussian
noise, this problem is known as Gaussian Process regression.
Gaussian process regression is a standard inference technique that
has become largely popular in machine learning (Rasmussen and
Williams, 2006). It does not only allow us to compute the best pre-
diction of s, but we obtain a full posterior distribution (sj tg). This
distribution is again a Gaussian Process GPðlc;RcÞ with its mean
and covariance function given by:

lcðxiÞ ¼ lðxiÞ þ RgðxiÞTðRgg þ r2IÞ�1ðtg � lgÞ;

Rcðxi; xjÞ ¼ Rðxi; xjÞ � RgðxiÞTðRgg þ r2IÞ�1
RgðxjÞ:

ð28Þ

Here we define the following block matrices:

RgðxiÞ ¼ ðRðxi; xjÞÞxj2Xg
2 Rq�d; ð29Þ

Rgg ¼ ðRðxi; xjÞÞxi ;xj2Xg
2 Rq�q; ð30Þ

lg ¼ ðlðxjÞÞxj2Xg
2 Rq�d: ð31Þ

While the formulas look rather different to the one obtained for
the PCA solution (11), the solution is equivalent. The (somewhat
lengthy) proof of this equivalence is given in Appendix B. We have
thus shown that all three views on the problem, PCA with regular-
ization, PPCA and Gaussian process regression are equivalent. In
particular, this means that all similar problems in the literature
regarding partial shapes can be interpreted as regression problems.

4.3. Alignment of the data

In Section 4.2 (Eq. (27)) we noted a statistical model can be
interpreted as a zero mean Gaussian process GP(0, R) that models
the displacements u(x) :¼ s(x) � l(x) from the mean shape l to a
shape s. The distribution of these displacements is estimated from
training data. Obviously this model will only yield good predictions
for new shapes if the displacements that are observed for new
shapes follow the same distribution as observed in the training
data. This can only be the case if the alignment of the data is con-
sistent between training and test data. Thus, given a shape sg that is
defined at only a subset Xg, our method will only yield meaningful
results if all training shapes have been aligned with respect to the
same points. To ensure this, we follow the strategy proposed by
Baka et al. (2010), and simplly realign all the training shapes and
compute a new model for each set of observed points Xg.

5. Model-based segmentation of femur bones from CT images

In this and the next section, we show the application of the con-
ditional models to two typical problems that arise in surgery plan-
ning: The segmentation of a bone from a CT image, and the
prediction of anatomically correct reconstructions of damaged or
malformed parts of a bone.

5.1. Atlas based segmentation using a statistical deformation model

Although bone segmentation from CT images seems like a
straight-forward problem and has been addressed by many
researchers over the years, it remains difficult to this day. Fig. 1
shows two typical issues that arise in most bone segmentation
problems, illustrated on the femur bone. At the top of the bone, it
is difficult to separate the femur from the hip bone and at the bot-
tom, the bone is so thin that the image intensity in this area is indis-
tinguishable from that of soft tissue. While the image comes from a
simple threshold segmentation, the same problems plague even the
most sophisticated segmentation approaches. In low resolution
images, these issues are aggravated by the partial volume effect.

A popular approach to achieve a segmentation even in these dif-
ficult regions is to include prior knowledge about the bones in form
of a statistical model (Heimann and Meinzer, 2009). By constrain-
ing the segmentation result to the span of the model, it is ensured
that the segmented object is a valid femur bone, thus preventing
the inclusion of adjacent bones or the omission of thin parts. The
segmentation approach we use is based on this idea. Instead of a
statistical shape model however, we use a statistical deformation
model (Rueckert et al., 2003). This model is built from deformation
fields obtained by registration of manually segmented images of
femur bones. We refer to A.1 for details of this procedure. Using
a deformation model instead of a shape model allows us to formu-
late the model fitting in terms of an image registration problem.
This approach is commonly referred to as ‘‘atlas matching’’. The
output is a deformation field, which can then be used to transfer
a high quality manual segmentation of the reference to the input
image. Again, we refer the reader to A.2 for mathematical details.

5.2. Experimental setup

The experimental setup for this section is as follows. For build-
ing the statistical model we use the Statismo framework (Lüthi
et al., 2012). The model fitting is performed using the Elastix regis-
tration framework (Klein et al., 2010), which was extended to al-
low for transformations defined by a statistical model. In all the
experiments, we use the mutual information metric to quantify
image similarity. The registration is performed using a 3 level mul-
ti-resolution scheme. As an optimizer we use stochastic gradient
descent. The landmark uncertainty (i.e. r in Eq. (3)) is set to
2 mm. This reflects our perceived accuracy in placing the
landmarks.

5.3. Femur segmentation with a posterior deformation model

The performance of atlas based segmentation crucially depends
on the accuracy of the registration between the atlas and the image
to be segmented. Using a statistical deformation model that is built
for a specific anatomical structure helps to restrict the registration
results to deformations that are anatomically meaningful. How-
ever, in practice there are often cases where even this prior does
not provide enough information to accurately identify the struc-
ture in the image. Such an example is shown in Fig. 3. The red con-
tour shows a result of fitting a deformation model for the
segmentation of a femur from a CT image. Overall, the shape is well



Fig. 2. The 6 landmarks defined on the femur.

Fig. 4. Example of a CT image of an isolated femur bone that was used for the
quantitative tests.
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matched. However, we see that the femoral head is not accurately
segmented. The proposed red outline is smaller than the bone’s ac-
tual outline. This happens because the intensity differences in this
area are very small. To overcome this problem we can further
strengthen our prior assumptions and incorporate known corre-
spondences into the deformation model, by means of a posterior
model.

In order to build the posterior model, we define 6 landmark
points LR ¼ pR

1; . . . ; pR
n

� �
on the reference image that was used to

build the deformation model (Fig. 2). The corresponding landmark
points LT ¼ pT

1; . . . ; pT
n

� �
are then marked on the target image. Using

these landmarks, we can build a posterior deformation model
pðujLT ; LRÞ � N ðlc;RcÞ, employing the method described in Sec-
tion 3. As the posterior model is again a deformation model, it
can be used for model fitting instead of the unconstrained model,
without requiring changes in the procedure. Besides providing a
stronger prior, using the posterior model has two further advanta-
ges: (1) The mean lc provides a superior initialization to the prob-
lem, which already matches the landmark points. (2) As the model
effectively excludes solutions that do not match the landmarks, the
search space is greatly reduced, leading to a simpler optimization
problem.

Fig. 3 shows the fitting result when the posterior model is used
(green contour). We observe that the fit is greatly improved at the
femoral head, as the segmentation outline is forced to adhere to
the bone’s true outline.
5.4. Quantitative results

To compare the performance of the posterior model with nor-
mal deformation models in this segmentation task, we performed
a quantitative evaluation on CT images of two sets of femur bones.
(1) A set of 27 surgically extracted femur bones (see Fig. 4 for a typ-
ical example). (2) A set of 13 femurs with surrounding tissue, as in
Fig. 3. For both sets, manual ground truth segmentations are avail-
Fig. 3. Fitting a deformation model to a CT image of the femur. The red contour shows th
femoral head correctly. The green contour shows the result for a posterior model, where
of the references to colour in this figure legend, the reader is referred to the web versio
able for comparison, and as partial information for the posterior
model, we manually labeled the 6 landmark points seen in Fig. 2.

The original deformation model is built from 114 manually seg-
mented femur bones. To ensure that this model is representative
for the deformations observed for the test images, we rigidly
aligned all the femurs using the same 6 landmarks that were de-
fined on the test images (cf. Section 4.3). We applied the deforma-
tion model fitting with the original model, the posterior model, and
the original model initialized with the posterior mean, which
amounts to a landmark-initialization of the original model. For
each method we computed the dice coefficient between the result
and the ground-truth segmentation. Fig. 5 shows the fitting result
for both test sets. It can be seen that fitting with a posterior model
(left plot) not only yields a better average accuracy, but also to less
variability in the results, i.e. the method becomes more robust. We
observe that only initializing the fitting with the landmark, but not
constraining the model (middle plot) does not give a clear advan-
tage compared to a normal unconstrained fitting (right plot). It ap-
pears as if the effect of the landmark-initialization is undone by the
fitting procedure. To further investigate this behavior, we evalu-
ated the initialization and landmark error for our larger test set
(Fig. 6). Fig. 6a shows that the landmark-initialization does indeed
give a much better starting solution, and Fig. 6b shows that the
landmark error after fitting of the landmark-initialized method is
actually almost as good as that of the posterior model. So why is
the overall performance measured in Fig. 5 hardly better than
the unconstrained and uninitialized model, while the posterior
model performs much better? This can be explained by the fact
that the posterior model greatly constrains the model space, which
positively influences the optimization procedure. Indeed, this con-
clusion is supported by Fig. 7, which shows the convergence of the
e fitting result using an unconstrained model, which fails to label the contour of the
a landmark was used to enforce the position of the femoral head. (For interpretation
n of this article.)



Fig. 5. Comparison of the segmentation performance (dice-coefficient) achieved by
model fitting. (a) Shows the result for a set of 27 CT images of isolated femur bones
and (b) shows the results for 13 clinical CT images.

Fig. 6. Comparison of the initialization and landmark error of the different
methods. (a) Shows the dice coefficient that is achieved by using the mean
deformation of the respective models, before any optimization is performed. (b)
Shows the error evaluated on the landmark points only. (Note that in (a) higher
values are better, while in (b) lower values indicate better results.)
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optimization algorithm averaged over all test cases, out of which
the posterior model converges the most quickly.
5.5. Discussion

The results we presented in this section clearly show that pos-
terior models can improve the results for model based segmenta-
tion tasks. The obvious application is to constrain the model with
landmarks in cases where a fully automatic method fails to find
the correct segmentation. Specifying a landmark point and con-
straining the model to remain fixed on this point provides an easy
to use and effective means to incorporate user interaction into an
algorithm. However, we also showed that using the posterior mod-
el improves the results even for relatively simple segmentation
tasks, such as the fitting of dry femur bones. As the posterior model
is a normal PCA model, it can readily be used to improve any algo-
rithm that uses a statistical model.
Fig. 7. Convergence of the fitting algorithm on the first resolution level. The curves
show the average metric value for the mutual information metric, averaged over the
test cases. The plots have been smoothed for clarity of visualization.
6. Predicting anatomically correct shapes for trochlear
dysplasia patients

In this experiment, we apply the conditional shape models to
predict anatomically correct bone shapes for trochlear dysplasia
patients. The term trochlear dysplasia describes a flattening of
the trochlear groove. The trochlear groove, which is marked in
Fig. 8, guides the patella during motion of the knee joint. If the
groove is too shallow, a correct guiding of the patella is not guar-
anteed, leading to pain or even a dislocation of the patella. Troch-
lear dysplasia can be treated surgically by deepening the trochlea
groove or augmenting its edges (Verdonk et al., 2005). Knowing
the ideal shape of the trochlea would be of great advantage for
the planning of such an intervention.

Specifically, we would like to use our model to help us answer-
ing the following questions:

1. Does the patient really exhibit an abnormal trochlea shape?
2. How should the trochlea be remodeled? How much should the

groove be deepened and/or the edges augmented?
3. How reliable is the prediction?

For this, we use a statistical shape model of the distal femur and
construct, individually for each patient, a conditional shape model



Fig. 8. Patella and femur. The trochlea is marked in red. If the trochlear groove,
which guides the movement of the patella, is not deep enough, a dislocation of the
patella is possible. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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given the healthy part, i.e. excluding the trochlea. The posterior
shape model represents all anatomically correct trochlea shapes
for the patient.

The children’s hospital Basel provided us with a set of 29 MRI
scans of trochlear dysplasia patients. All the datasets are clinical
scans recorded during the daily routines of the hospital.

6.1. Experimental setup

The posterior shape models introduced in Section 2 rely on a
previous shape model of the full shape. For this experiment, we
Fig. 9. Estimation of an anatomically correct femur shape. The green contour shows the g
is clearly visible that the patient’s original trochlea is too flat to hold the patella in place,
(For interpretation of the references to colour in this figure legend, the reader is referre
use a statistical shape model of the distal part of the human femur
built from 145 healthy example data sets. The model is built as a
PPCA model with the parameter q estimated by a leave-out-exper-
iment resulting in a value of q = 0.26. As explained in Section 3.1,
the given data for the conditional shape model needs to be in cor-
respondence with the original model. Therefore, we first produce a
surface representation of the patient’s femur by segmenting it from
the MRI data set. This is brought into correspondence with the sta-
tistical shape model using an Iterative Closest Point (ICP) fitting
(Feldmar and Ayache, 1996), which estimates the position and
shape parameters a of the model that best fit the segmented sur-
face of the patient’s femur. Due to large variations in the quality
and image modality of the MRI scans, the segmentation is per-
formed manually using the 3D Slicer software (Pieper et al.,
2004) and not with the segmentation presented in the previous
section.

As a next step, we wish to separate the afflicted trochlea region
from the healthy part of the patient’s bone, which will take the role
of the given data sg. Thanks to the correspondence between the
model and the patient’s data set, the marking of the trochlea can
be transferred automatically from a mask defined on the model.
In Fig. 9 the two regions are visualized for an example case. The
red trochlea region is then discarded and shall be predicted using
the conditional shape model.

The ICP fitting used to establish correspondence with the model
was performed using the complete data set including the
malformed trochlea. In order to rule out any influence this may
have on our prediction, we perform a second ICP fitting using only
the healthy part sg. At this point we can finally apply the methods
outlined in Section 2. The deviation parameter r was estimated
iven points sg, the red contour the most probable reconstruction lc of the trochlea. It
whereas the proposed reconstruction has a pronounced groove to guide the patella.
d to the web version of this article.)



Fig. 10. A second example with given data sg in green probable reconstruction lc in red. The green part of the contour is the given part sg. Again, the difference between the
patient’s flat trochlea and the proposed anatomically correct reconstruction is clearly visible. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. When the method is applied to healthy bones, the proposed reconstructed shapes are very close to the patient’s true trochlea, indicating that neither patient (a) nor
(b) suffers from trochlea dysplasia.
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Fig. 12. The remaining flexibility of the conditional shape model p(sjsg) displayed
by adding the first principal component to the mean shape with coefficients
between (a) ±9 and (b) ±3 standard deviations.
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using the distance from the fitted models to the segmented sur-
faces, yielding a parameter of r = 1. The result is a conditional
shape model p(sjsg) as defined in Eq. (11). It models full anatomi-
cally correct femur shapes s that fit the given healthy part sg. The
mean shape of this model represents the most probable shape of
an anatomically correct trochlea for the patient given sg. Addition-
ally, the conditional shape model models the space of all other
shapes which fit the given healthy points. Although none of the
shapes is more probable than the mean, they can deliver an insight
into the remaining flexibility of the model and show the planning
physician what other trochlea shapes could be possible.

6.2. Results

Here, we show visualizations of the proposed anatomically
correct femur shapes for trochlea dysplasia patients. First, we
show the most probable reconstruction. This is the mean lc of
the posterior shape model. In Fig. 9d the proposed shape is illus-
trated as a 3D shape placed into the patient’s MRI scan. The
remaining images in Fig. 9 show the intersection of the proposed
shape with MRI slices. The green portion of these outlines repre-
sents the given healthy points sg. We observe that these fit the
individual anatomy of the patient’s femur well. The red part rep-
resents the trochlea region that is proposed by our posterior
model. It exhibits a much deeper trochlear groove than that of
the patient, confirming that this patient suffers from trochlea dys-
plasia. The proposed shape could be used as an operation plan for
a surgeon. It is visible to what extent the trochlea groove needs to
be deepened and that an augmentation of its edges should also be
considered. Most likely, this remodeled shape would greatly im-
prove the guiding of patella movement and prevent future dislo-
cations. Fig. 10 shows the result of another case with similar
results.

In both cases, the proposed anatomically correct trochlea differs
from the patient’s trochlea, confirming the already known diagno-
sis that he or she suffers from trochlea dysplasia. In contrast, we
performed the same experiments on CT scans of two healthy bones
in Fig. 11. Here, the proposed reconstruction agrees well with the
patient’s trochlea, confirming that he or she is not suffering from
trochlea dysplasia.

In these images, we have only displayed the most probable
reconstruction, the mean of the posterior shape model. However,
in order to answer some of the questions posed earlier, we need
to consider the full posterior shape model. First, it could be pos-
sible that the most probable reconstruction differs from the pa-
tient’s trochlea, but that his trochlea shape is still in the range
of normal shapes, modeled by the posterior model. In Fig. 12,
we display the first principal component of the posterior shape
model for the patient from Fig. 9. First, we visualize the anatom-
ically normal range of ±3 standard deviations associated with this
principal component in Fig. 12a. It shows that while there is still
some flexibility regarding the depth of the trochlea groove. The
patient’s trochlea is far from the normal range. In order to give
a better visual indication of the remaining flexibility, we exagger-
ated the same visualization to ±9 standard deviations in Fig. 12b.
We see that the first principal component of the posterior model
represents the depth of the trochlea groove. It should be noted
however, that ±9 includes highly improbable and/or pathological
shapes.

Obviously it is not enough to consider only the first principal
component. In Fig. 13 we display the range of ±3 standard devia-
tions for the first five principal components, for 5 patients. Patient
1 is the same patient as in Fig. 9, and Patient 2 the same as in
Fig. 10. These examples lead us to the following conclusions:

1. All of these patients do suffer from trochlea dysplasia.
2. In all of these cases a deepening of the trochlea groove seems to

be indicated. In most cases an small augmentation of the troch-
lea’s edges should be considered.

3. The remaining flexibility is quite small, i.e. the range of possible
reconstructions is most likely lower than the precision attain-
able in the operation. This means that the surgeon does not
need to take any alternatives to the most probable reconstruc-
tion into account.

All the results we have presented so far provide a surgeon
with a visual representation of the situation. Obviously it would
be desirable in the future to transfer this directly into the oper-
ating room, for instance with an augmented reality system or
even implementing the reconstruction automatically with a
robot.

For now, to gain a more quantitative view of the reconstruction,
it is possible to measure the exact distance between the patient’s
trochlea and the proposed reconstruction in each MRI slice. In
Fig. 14a, we have plotted this distance on the proposed shape.
The largest distance is seen in the trochlea groove and on its edges.
Such a color code can guide the surgeon with respect to the depth
and extent of the proposed trochlear groove. Fig. 14b shows a his-
togram of the distance values. The green bars represent the dis-
tance at the given points sg, showing that at these points the
shapes essentially coincide. In red, we see the histogram of the
trochlear region, which shows, again, that at many of these points,
the proposed shape differs from the original one, proposing a
deepening of the trochlear goove and a possible augmentation of
its edges.



Fig. 13. The first five principal components of the posterior shape model for five different patients. While there is some remaining flexibility in the model, it is quite small,
showing that no significantly different reconstructions other than the most probable reconstruction need to be considered.
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7. Conclusion

We have introduced a statistically sound method to include
known partial data to methods involving statistical shape models
by conditioning the statistical model on the given data. Because
this posterior shape model is itself again a statistical shape mod-
el, it can be used without alterations in all algorithms relying on
statistical shape models. As we have shown that the posterior
model can be efficiently computed by a small n � n singular value
decomposition, its use comes at almost no additional computa-
tional cost. We therefore believe that our method should replace
existing ad hoc methods used to combine shape models and given
data.

To show the usefulness of our approach, we have applied the
posterior shape model to two problems from medical image anal-
ysis that naturally depend on the use of statistical shape models as
prior knowledge. Since their invention, statistical shape models
have been used for image segmentation. But the possibility to in-
clude user interaction to correct mistakes of fully automatic meth-
ods has so far received little attention. With our posterior models,
user-supplied landmarks can be included into any algorithm that
uses a statistical shape model. For our experiment, we have used
a straight-forward strict shape constraint. While this does not war-
rant a perfect segmentation, only a good approximation within the
model, we were able to show that the results benefit from the
inclusion of landmarks. We see one of the great strengths of the
posterior model in the fact that they are not limited to this specific
segmentation model, but can be included like any other shape
model in other, possibly more involved, algorithms. The second
experiment we presented is also a standard application of statisti-
cal shape models: to predict one part of the shape from another. In
our case we predict the malformed trochlea region of patients suf-
fering from trochlear dysplasia from the remaining intact part of
the distal femur. With the posterior shape model we can compute
not only the most probable reconstruction, but a full shape model
of possible reconstructions that can help a surgeon make an in-
formed decision on how to perform a reconstructive surgery.

Outlook. An obvious way to extend our model is to adopt a more
specific noise model, in case anything further is known about the
accuracy or noise affliction of the given data. This could be a more
complicated normal distribution or a different distribution
altogether.

Like all shape models, our model depends heavily on the correct
estimation of correspondence, both for the building of the original



Fig. 14. Quantitative evaluation of the distance between original and proposed femur shape. (a) shows the distance color-coded on the proposed shape. In (b) the green bars
show the histogram of the distance values for the given points, the red bars the histogram of the estimated points. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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statistical model and for the correspondence of the given data. But
once the correspondence is correctly estimated, we have a closed-
form expression for a posterior shape model that can be applied in
any algorithm that uses a statistical shape model.
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Appendix A. Alignment, registration, and correspondence

In statistical shape models, shapes are assumed to be vectors,
i.e. it is possible to form linear combinations of shapes. However,
in practice, shapes are often given as triangulated surfaces, with
a different number and ordering of triangles for each shape and
it is not clear how linear combinations of these surfaces can be
formed. The common approach for this problem is to register the
shapes. In short, registration can be described as finding vector
fields /i such that a set of shapes C1, . . ., Cn can be represented
as a deformation of a common reference C:

Ci ¼ fxþ /iðxÞjx 2 Cg; i ¼ 1; . . . ;n: ðA:1Þ

If C is a triangulated surface with m vertices, each shape can then be
represented by the shape vector si 2 Rp with p = 3m as:

si ¼ vx
i;1; v

y
i;1; v

z
i;1; . . . ; vx

i;m; v
y
i;m; v

z
i;m

� �T
; ðA:2Þ

where the vector v i;j ¼ vx
i;j; v

y
i;j; v

z
i;j

� �
represents the x, y, z coordinates

of the jth vertex of Ci. It is this representation that allows treating
shapes like vectors and form linear combinations in the statistical
shape model. The same principle can be applied to other discretiza-
tion methods or representations of shapes. Finding the vector fields
/i is a central problem in medical imaging and computer vision and
is referred to as the registration or correspondence problem. The ver-
tices vi, j should represent corresponding points in each surface Ci.
Many algorithms for surface registration have been described in
the literature (see e.g. Audette et al. (2000) for an overview).

Typically, statistical shape models model only variations in
shape and not variations in position. The most straight-forward
way to achieve this is to align the shapes before registration. Then,
the vector fields /i reflect only the changes in shape, as the position
and orientation of the surfaces is normalized. In practice, this
means that for each shape Ci a rigid motion aligning it with the ref-
erence has to be computed. This is referred to as ‘‘rigid registra-
tion’’. Similarly, if an existing model is to be fitted to a novel data
set, the two have to be aligned first, so that the shape model only
needs to account for changes in shape.
A.1. Building the statistical deformation model

To build a deformation model, we use a database of manually
segmented anatomically normal femur shapes. We choose an arbi-
trary shape as the reference, which we denote by CR � R. On this
reference, we define a number of landmark points
LR ¼ pR

1; . . . ; pR
n

� �
� CR (Fig. 2). The same landmarks are defined

on all the other example surfaces from the database, and we per-
form a rigid alignment Horn (1987) to exclude rotational and
translational components from our model. We denote the aligned
surfaces by C1, . . ., Cn. As a next step we establish correspondence
between the aligned surfaces by performing image registration on
level set representation of the surfaces, as proposed by Paragios
et al. (2002). More specifically, we register the signed distance
images of the shape with the diffeomorphic Demons algorithm
(Vercauteren et al., 2007). The result is a set of deformation fields
u1; . . . ;un; ui : X! R3. We build the statistical deformation model
by applying Principal Component Analysis on these deformation
fields (Rueckert et al., 2003). Then, each instance of the statistical
deformation model is a deformation field u½a� : X! Rd that can
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be represented as a linear combination of principal components qi

with the coefficients given by the parameter vector a = (a1, . . ., an):

x # lðxÞ þ
Xn

i¼1

ai qiðxÞ; ðA:3Þ

where we used the function notation introduced in Section 4.2.1.

A.2. Image segmentation with a statistical deformation model

Let CT be a new CT-Image of a patient, for which we want to per-
form the segmentation. By using a simple threshold segmentation,
we can obtain a rough segmentation of the femur bone, which we
denote as eBT .

We annotate eBT with the same landmarks as were used in the
registration and perform the rigid alignment to the reference im-
age. We compute a distance image IT: X ? R from the segmenta-
tion eBT . For the reference, we have a high-quality manual
segmentation BR, from which we compute the distance image IR.
To find the deformation that best relates the reference with the tar-
get, we use again a registration approach of these distance images.
We seek the deformation u[a], which minimizes the error between
the reference IR and the target IT and which is at the same time a
likely instance of the model (i.e. kak2 is small):Z
fxjIRðxÞ<0g

ðIRðxÞ � ITðxþ u½a�ðxÞÞÞ2dxþ kkak2 !min
a2Rn

: ðA:4Þ
The parameter k 2 R determines how strongly unlikely deforma-
tions are penalized.

The final segmentation BT of the image CT is obtained by trans-
ferring the high quality reference segmentation BR onto the CT im-
age. More precisely, we define the map /(x) = x + u[a](x), x 2X and
obtain the segmentation BT as

BTðxÞ ¼ BRð/�1ðxÞÞ:

While the inverse /�1(x) is typically not available explicitly, we can
always compute an approximate inverse using Chen et al. (2008).
Appendix B. Equivalence between PCA and Gaussian process
formulation

Proposition 1. The Gaussian process GPðlp;RpÞ from Eq. (28)
describes the same multivariate normal distribution as the conditional
distribution p(sjsg) from Eq. (11).
Proof. The Gaussian process interprets shape deformations as vec-
tor-valued functions defined on a finite domain X = (x1, . . ., xN). But
because these points are the points of our discrete surface model,
each function f : X! Rd can be identified with a it p = Nd-dimen-
sional vector of the values the vector components take at all the
points. In this sense, the mean function l(xi) from Eq. (28) is the
same as the mean vector l 2 Rp from Eq. (11). Accordingly, the
matrix Rgg corresponds to the matrix Q gQ T

g , and Rg(xi) to QgQT.
Thus, the mean lc of the Gaussian process GPðlc;RcÞ can be rewrit-
ten as:

lþ Q Q T
g Q gQ T

g þ r2Iq

� ��1
ðsg � lgÞ ðB:1Þ

On the other hand, we can write out the mean lc of the conditional
distribution p(sjsg) as:

lþ Q Q T
g Q g þ r2In

� ��1
Q T

g ðsg � lgÞ ðB:2Þ
While they are similar, these expressions are not the same, as the
inner terms seem like rearranged versions of each other. However
the following Lemma 1 proves that they are indeed equivalent.

Similarly, the covariance function Rc of the Gaussian process
can be rewritten as a matrix:
QQ T � QQ T
g Q gQ T

g þ r2Iq

� ��1
Q gQ T ðB:3Þ

while the covariance matrix Rc of the conditional distribution is
written out as:

r2Q Q T
g Q g þ r2In

� ��1
Q T : ðB:4Þ

By factoring out the matrices Q and QT and rearranging the last
expression we see that the two expressions are equal if and only if:

In þ r�2Q T
g Q g

� ��1
¼ Iq � Q T

g Q gQ T
g þ r2Iq

� ��1
Q g : ðB:5Þ

This identity can be proved by setting
A ¼ In; U ¼ Q T

g ; B ¼ r�2Iq; V ¼ Q g in the Binomial Inverse Theo-
rem (Lemma 2). h
Lemma 1. The following identity holds for any matrix A 2 Rq�n:

ATðAAT þ r2IqÞ
�1
¼ ðAT Aþ r2InÞ

�1
AT
: ðB:6Þ
Proof. First, we consider the case of q P n. Let A = U WVT be a sin-
gular value decomposition of A 2 Rq�n. For this proof, we assume
that this is a not an ‘‘economy SVD’’ but a full singular value
decomposition with matrix sizes U 2 Rq�q; W 2 Rq�n, and
V 2 Rn�n. Bearing in mind that the matrices U and V are orthonor-
mal, we have:

ATðAAT þ r2
qIÞ
�1

ðB:7Þ

¼ VWT UTðUWWT UT þ U r2Iq UTÞ�1

¼ VWT UT UðWWT þ r2IqÞ
�1

UT ðB:8Þ

¼ VWTðWWT þ r2IqÞ
�1

UT ;

where in (B.8) we have used that U diagonalizes the inverse matrix
in the bracket. The matrix WT has a block structure WT ¼ fW 0

h i
,

where fW 2 Rn�n is the diagonal matrix of singular values of A and
0 2 Rn�ðq�nÞ fills up WT 2 Rn�q with zeroes. We can therefore
continue:

¼ V fW 0
h i ðfW2 þ r2InÞ

�1
0

0 r�2Iq�n

" #
UT

¼ V fWðfW2 þ r2InÞ
�1

0
h i

UT

¼ V ðfW2 þ r2InÞ
�1

h i fW 0
h i

UT

¼ VðWT Wþ r2InÞ
�1

WT UT

¼ VðWT Wþ r2InÞ
�1

VT V WT UT

¼ ðVWT WVT þ Vr2InVTÞ�1
V WT UT

¼ AT Aþ r2
nI

� ��1
AT
:

This concludes the proof for q P n. The case q < n can be proved by
transposing both sides of (B.6). h
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Lemma 2 (Binomial Inverse Theorem). Let
A 2 Rn�n; U 2 Rn�q; B 2 Rq�q; V 2 Rq�n. If B is invertible, we have:

ðAþ UBVÞ�1 ¼ A�1 � A�1UðB�1 þ VA�1UÞ
�1

VA�1
: ðB:9Þ

Proof.
This is the Binomial Inverse Theorem for the case that B is

invertible. For a proof, see e.g. Strang (2003). h
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