
Using a Flexibility Constrained 3D Statistical Shape Model
for Robust MRF-Based Segmentation
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Abstract

In this paper we propose a novel segmentation method
that integrates prior shape knowledge obtained from a 3D
statistical model into the Markov Random Field (MRF)
segmentation framework to deal with severe artifacts,
noise and shape deformations. The statistical model is
learned using a Probabilistic Principal Component Anal-
ysis (PPCA), which allows us to reconstruct the optimal
shape and to compute the remaining variance of the statis-
tical model from partial information. The statistical model,
with its remaining variance, can then be used to constrain
the shape space, which is a more efficient shape update
as compared to a regularization-based shape model recon-
struction. The reconstructed shape is optimized over an
edge weighted unsigned distance map calculated from the
current segmentation, and is then used as a shape prior
for the next iteration of the segmentation. We show the ro-
bustness to high-density imaging artifacts of the proposed
method by providing a quantitative and qualitative evalu-
ation to the challenging problem of 3D masseter muscles
segmentation from CT datasets.

1. Introduction
Face is the unique external perceivable identity of a hu-

man. It depicts the individual personality and the character-
istics of the human in daily contact with other humans thus
making it of fundamental importance for them. It is the
area where most of the important sense organs are present.
These sense organs are the main source for conveying our
expressions to others. The shape and the unique features of
a face are determined by the musculoskeletal system which

(a) Side view. (b) Frontal view. (c) Axial view.

Figure 1. (a,b) 3D and (c) 2D views of the masseter muscle (green)
(color online).

consists of bones and soft tissues. For any facial surgical
treatment accurate planning based on available preoperative
diagnostic datasets, such as segmentation of bones and soft
tissues, is important to guarantee an optimal, functional and
aesthetical outcome.

Image segmentation is an ill-posed problem which aims
to separate a given image into at least two constituent parts.
This problem can be solved by using MRFs in which effi-
cient optimization methods, such as graph-cuts [4] can be
used to find the global minimum that is based only on the
low-level prior knowledge encoded into the regional and
boundary terms of the energy functional. Datasets corrupted
by imaging artifacts, inhomogeneities or noise require addi-
tional shape information in order to efficiently constrain the
target anatomical structure. The main challenges, however,
lies in integrating diverse prior information into graph-cuts
and in modeling the shape variability.

There are two fundamental approaches to integrate the
shape priors. Either they are integrated into the boundary
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Figure 2. Segmentation process (color online).

term of the MRF, such as in Das et al. [7], Freedman and
Zhang [10] and Veksler [17], or into the regional term of
the MRF, such as in Slabaugh and Unal [15], El-Zehiry and
Elmaghraby [9], Ali et al. [1], Freiman et al. [11], Malcolm
et al. [14].

Modeling shape variability is crucial in order to obtain
desired solutions, especially in medicine where anatomical
structures have considerable shape variability. Some meth-
ods, such as the elliptical shape prior of Slabaugh and Unal
[15], the compact shape prior of Das et al. [7] and star shape
priors of Veksler [17] have the drawback that the class of
representable shapes is limited. Freedman and Zhang [10]
used an unsigned distance map of the aligned shape tem-
plate’s contour represented by the 0-level set to incorporate
prior shape knowledge. Although there is no restriction on
the types of shapes that can be represented, their method
requires a good initial alignment of a fixed template with
the object of interest. A fixed shape template is not versa-
tile enough to capture the shape variability generally seen in
anatomical structures. El-Zehiry and Elmaghraby [9], Ali et
al. [1], Freiman et al. [11] and Malcolm et al. [14] incorpo-
rated statistically learned shape models. El-Zehiry and El-
maghraby, Ali et al. and Freiman et al. learned their shape
models by registering the training shapes and then creating
a probability map by over-laying the registered shapes. The
problem with such methods is that there is no statistical de-
pendence between the shapes, where certain invalid shapes
can be generated from such models. To elevate the problem
of possibly generating invalid shapes, Malcolm et al. [14]
learned the shape model through the application of kernel
PCA.

As automatic segmentation with MRF is prone to leaking
due to weak edges, noise, imaging artifacts and the missing
shape knowledge, we developed a novel approach that com-
bines MRF-based segmentation with a 3D statistical shape
model as prior anatomical knowledge. The shape model is
constructed from the manually segmented CT datasets by
using a linear PCA to model the shape variability. Instead

of constraining the variability of the model through regu-
larization [2, 18], where finding a good regularization pa-
rameter for all datasets is difficult, we adapt the constrained
variability approach of Lüthi et al. [12]. The variability can
be constrained by additional observed knowledge, such as
input landmarks. In segmenting the masseter muscle (see
Fig. 1), for instance, the muscle attachments to the bone,
as well as a previous skull segmentation step, can be used
as landmarks. Our segmentation process is done as follows:
First we use an initial shape generated using the statistical
model that best fits the landmarks, as the starting shape prior
to segment the muscle. We then use the result to reconstruct
a new optimal shape prior using the statistical model for the
next iteration. This process is repeated until convergence as
shown in Fig. 2.

The main advantages of the proposed method are ef-
ficient ways: 1) to integrate a 3D shape model into the
regional term of the graph-cut; 2) to constrain the shape
model to maximize the robustness with respect to noise, ar-
tifacts and shape degeneration; 3) to iteratively optimize the
shape prior and intensity profile based on the evidence from
the previous segmentation which increases the segmenta-
tion accuracy.

2. Statistical Model
Statistical shape models are widely used to capture the

shape variability of a class of shapes from a representative
set of training shapes [6, 18]. If the training dataset is a
good representative of the class of shapes, then the resulting
statistical model can be fitted to any shape within this class.

In our work the shape knowledge is learned from the
PPCA based approach as suggested by Lüthi et al. [12] in-
stead of using the traditional PCA based approach of [6, 18].
The difference is that PPCA provides an additional proba-
bilistic interpretation of the PCA based model. The main as-
sumption while building statistical shape models is that the
samples are Independent and Identically Distributed (i.i.d)
having a multivariate Gaussian distribution with probability
density function p ∼ N (x̄,Σ) with mean x̄ and covariance
Σ. Singular Value Decomposition (SVD) can then be ap-
plied to decompose Σ = UD2UT . U are the eigenvectors
while D2 represents the corresponding eigenvalues of Σ.
Let {xi ∈ R3m|i = 1, . . . , n} be n 3D triangulated sur-
face meshes where m is the number of vertices. Shape x1

is arbitrarily chosen as the reference surface. All the sur-
faces are aligned with x1 by aligning the manually labeled
landmarks on the sample shapes xi using procrustes align-
ment. xi are then registered with x1 by computing curva-
ture sensitive deformation fields for the vertices of x1 using
the method of Dedner et al. [8], which results in all sample
shapes having the same number of vertices. The goal is to
build a statistical shape model of the muscle over this distri-
bution of surface meshes using the PPCA based approach.
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2.1. Reconstruction from Partial Information

A surface mesh x can be partitioned into x := (xa,xb)
T ,

where xb ∈ R3l is the known information based on l-
landmarks while xa is unknown and which is to be esti-
mated from the known information. We assume that this
additional knowledge is provided in the form of l-landmark
points. In our application these landmarks are obtained
from manually labeled landmarks, which in our case are the
muscle attachments at the facial bones. Once xb is known,
it is natural to assume that the total variability of the statis-
tical model will reduce as further evidence is obtained. The
probability distribution of shape x can be written as

p(x)=p(xa,xb)=N

([
x̄a

x̄b

]
,

[
WaW

T
a WaW

T
b

WbW
T
a WbW

T
b

]
+σ2I3l

)
, (1)

where I3l is a 3l × 3l identity matrix, W = [WaWb]
T ∈

R3m×d is the d-largest scaled eigenvectors and σ is a pa-
rameter that controls the remaining variance of the statisti-
cal model. As it is assumed that x has a multivariate nor-
mal distribution, the conditional distribution p(xa|xb) ∼
N (x̄xa|xb

,Σxa|xb
) is also a multivariate normal distribu-

tion with mean xxa|xb
and covariance Σxa|xb

.
It is however, not possible to compute Σxa|xb

directly
since it is potentially huge. As the shape x can be deter-
mined from α, the coefficients of the main modes of vari-
ation of the statistical model, and the distribution of α in
turn can be estimated from the partial information xb as
p(α|xb). It is known that

p(xb|α) = N (Wbα + x̄b, σ
2I3l) , (2)

and since p(α) ∼ N (0, Id), then using the Theorem of the
Linear Gaussian Model [2]

p(α|xb) = N (M−1WT
b σ
−2(xb − x̄b),M

−1) , (3)

where M = σ−2WT
b Wb + Id.

Once α is determined the most likely reconstructed
shape x∗ given partial shape information xb can be calcu-
lated using

xxa|xb
= x∗ = arg max

x
p(x|α) = Wα + x̄ . (4)

Here x∗ also happens to be the mean shape x̄xa|xb
of the

statistical model with constrained variability.
Larger σ means higher remaining variance and the land-

marks are allowed to deviate more from the marked loca-
tions. On the other hand, smaller σ means lower variance
and the landmarks stay closer to the marked locations but
then the model undergoes over fitting. The maximum like-
lihood estimates of x̄,W, σ can be calculated as shown by
Tipping and Bishop [16].

(a) Original variance. (b) Remaining variance.

Figure 3. Normalized variances of the statistical model (color on-
line).

2.2. Remaining Variance

The covariance matrix Σxa|xb
can be decomposed as

WM−1WT

= Ud{(D2
d − σ2Id)

1
2 M−1(D2

d − σ2Id)
1
2︸ ︷︷ ︸

A

}UT
d . (5)

As it is prohibitively large, Lüthi et al. [12] suggest apply-
ing SVD on A, that is,

SVD(A) := ŨD2
xa|xb

ŨT . (6)

Thus we have an eigenvalue decomposition

WM−1WT = (UdŨ) D2
xa|xb

(UT
d ŨT ) , (7)

where UdŨ is the orthogonal principal components and
D2

xa|xb
is the diagonal matrix of the corresponding vari-

ances. UdŨ, D2
xa|xb

and x∗ can now be used to generate
a new shape x with the remaining flexibility of the model
using

x = x∗ + (UdŨ)Dxa|xb
α . (8)

As an illustration of the concept of remaining variability,
we show in Fig. 3 the original variance of the model (a) and
the remaining variance of the model after being fit to the
muscle attachments (b). For in-depth analysis of the recon-
struction of a complete shape given partial information and
calculating the remaining variance see Lüthi et al. [12].

59



(a) (b)

Figure 4. The probability maps of the object (a) and the back-
ground (b) (color online).

3. Segmentation Model

The MRF theory provides a nice mathematical frame-
work for solving image segmentation problems, which can
be casted as a binary labeling problem. Minimizing the en-
ergy of this binary labeling results in the segmentation of
the target structure. Let P = {1, 2, ...Y } be the set of Y
voxels of the volume dataset and let a neighborhood sys-
tem N = {Np|∀p ∈ P} defined over the set of voxels
P , where Np consists of all unordered 26 neighbors of the
voxel p ∈ P . Let Z = {z1, z2} = {0, 1} be the set of bi-
nary labels, 0 for background and 1 for object. The goal of
the image segmentation problem is to find an optimal map-
ping φ : P 7−→ Z that assigns a label from Z to each voxel
p ∈ P . The general energy function is given by

E(z|I) =
∑
p∈P

Vp(zp|I) +
∑
p∈P

∑
q∈Np

Vp,q(zp, zq|I) , (9)

where z is a binary variable which defines the segmentation,
I is the observed intensity data, Vp(zp|I) and Vp,q(zp, zq|I)
are the regional and the boundary terms respectively. The
regional term encodes the individual penalties for assigning
voxel p to object and background given the observed image
data I. The boundary term encodes a discontinuity penalty
between adjacent voxels p, q incurred when they are jointly
assigned labels zp and zq where q ∈ Np given the observed
image data I. They are based on the traditional graph-cut
intensity based energy function of Boykov and Jolly [4].

3.1. Integrating Shape Prior Term

We propose to incorporate the additional shape prior
term Vp(zp|x∗) in the regional term of the energy func-
tionalE(z|I,x∗). The muscle segmentation problem is then
solved by minimizing the modified energy functional given

(a) (b)

(c) (d)

Figure 5. Dataset with ground truth (orange) in 2D (a), inverse
edge map (b), unsigned distance map (c) and edge weighted un-
signed distance map (d) (color online).

by

E(z|I,x∗) =
∑
p∈P

{
Vp(zp|I) + µVp(zp|x∗)

}
+ λ

∑
p∈P

∑
q∈Np

Vp,q(zp, zq|I) , (10)

where x∗ is the optimal reconstructed shape which is used
as the shape prior, λ is the smoothness parameter and µ is
the shape prior parameter. The shape term encodes how
likely a particular voxel p is to belong to the object “1” and
the background “0”, given the shape prior x∗.

A probability map for the voxels to belong to the object
and the background is created using the unsigned distance
map of the shape prior’s contour. All the voxels enclosed
by the shape prior are used to create the object probability
map. The voxels at the center of the shape are more likely
to belong to the object as compared to the voxels close to
the contour as shown in Fig. 4(a). Thus the voxels at the
center incur a higher penalty to belong to the background
as compared to voxels close to the contour. Voxels outside
the contour incur 0 penalty for belonging to background.
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The opposite is true for the background probability map,
where only the voxels outside the contour are considered.
The voxels close to the contour are more likely to belong
to object as compared to the voxels farther away, see Fig.
4(b). The penalty is computed as the negative log-likelihood
of belonging to object Vp(zp = “1”) = − lnPr(xp|“1”)
and background Vp(zp = “0”) = − lnPr(xp|“0”). Such
encoding of the global shape information transforms it into
local constraints.

4. Implementation Details
In this section, we describe the implementation details

for our masseter muscle segmentation. The Algorithm 1
along with Fig. 2 summarizes the steps of the proposed
segmentation algorithm that are detailed in the upcoming
subsection.

Algorithm 1
Input: Reconstruct optimal shape from landmarks.
Output: Graph-Cut segmentation of target muscle.
Repeat
• Compute Vp(zp|x∗) as explained in Section 3.1.
• Create graph according to the energy function
E(z|I,x∗).
• Segment using graph-cut.
• Create edge weighted unsigned distance map from seg-

mentation.
• Optimize the shape model over this unsigned distance

map.
Until Convergence

4.1. Initial Shape from the Landmarks

To get an initial estimation of the masseter muscle, pro-
crustes method is used to align the statistical model with the
given landmarks. In our case, we have six landmarks ob-
tained manually. A reconstruction of the statistical model
given the landmarks, as explained in Sec. 2.1, is then calcu-
lated to get an initial shape prior for the segmentation.

4.2. Shape Optimization

Once the initial shape has been determined, the shape
probability maps for the object (see Fig. 4(a)) and the back-
ground (see Fig. 4(b)) are created as explained in Sec. 3.1.
A graph G corresponding to the energy function E given
by Eq. 10 is created and graph-cut [5] is used to compute
the global minimum. The boundary of the resulting seg-
mentation is then used to create an edge weighted unsigned
distance map as shown in Fig. 5(d). This distance map
is used as a cost function to fit the statistical shape model.
Since the statistical shape model is represented by a very
dense triangulated surface mesh, the vertices of the mesh

fall in voxels of the dataset and the corresponding value of
the voxel given by the weighted unsigned distance map is
the cost this vertex incurs given the shape coefficients α.
The objective is to optimize the statistical shape model by
minimizing the sum of the cost of vertices constrained by
generating only statistically valid shapes. If the statistical
model fits perfectly to the segmentation boundary, the cost
of such a shape would be 0. The coefficients of the main
modes of variation α of the statistical model are optimized
using gradient descent based optimization approach. The
optimized shape is then used as a shape prior for the next
iteration to generate probability maps for the object and the
background and the same process is iteratively applied until
the convergence is reached (see Fig. 6).

4.3. Constraining The Variability

The theory of variability constrained statistical models
(see Sec 2.2) is used during shape optimization as it is more
stable as compared to the unconstrained statistical models.
The vertices which are fixed at the known landmarks stay
fixed or undergo only slight movement from their position;
this avoids shrinking of the model. The generally used reg-
ularization scheme to constrain the model [3], forces the
shape to be as close as possible to the mean shape x̄. Forc-
ing a shape to be close to mean shape, however, decreases
the flexibility of the statistical model to fully represent the
shape variability of the anatomical structures. The benefit
of smooth shapes comes at the cost of a reduced flexibil-
ity of the statistical model. It is also difficult to find good
regularization parameters for each datasets. Using the sta-
tistical model with constrained variability in contrast pro-
vides a statistical model which is stable, generates smooth
shapes and has reduced variability but no reduction in shape
representational power of the model, because only the un-
necessary variability has been removed. This constrained
statistical model can still be regularized which will force
the shape to be close to the optimal shape, as the optimal
shape is also the mean shape of the constrained statistical
model.

5. Experimental Results
The method was tested on 20 CT datasets of the masseter

muscle with dataset dimensions 79-156 × 148-214 × 125-
384 voxels and spacing 0.3-0.5× 0.3-0.5× 0.3-1 mm3. All
datasets were noisy, possessing mild to severe imaging arti-
facts such as high-density artifacts caused by e.g. the very
common dental fillings and dental implants. The datasets
were chosen randomly from the hospital repository so that
they could represent anatomical variations. A medical ex-
pert provided the ground truth segmentations. Leave-One-
Out approach was used to evaluate the method. The ground
truth segmentations were used to create the statistical model
with constrained variances. As it is difficult to pin-point the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The evolution (left to right) of the shape prior (green) to the target muscle (orange) on a corrupted dataset. (a-d) in 3D and their
corresponding 2D slices (e-h) (color online).
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Figure 7. Comparison results. Incorporating the shape prior information in the regional term (blue) is more accurate as compared to
methods that incorporate the shape in the boundary term (green and red). Note that the red curve shows the result of [10] where a fixed
shape template is used in the boundary term (color online).
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muscle attachments on the bone, the landmarks only pro-
vide a rough estimation of the location and the shape of the
specific patient’s muscle. The proposed technique, how-
ever, is unaffected by landmark placement and the model
behaves nicely even when the landmarks have not been cor-
rectly placed. The statistical shape model converges to the
target muscle shape in 4 − 7 iterations. The segmenta-
tion time was around 5 minutes per dataset on a Ubuntu
11.04 PC (Intel(R) Core(TM) i7 CPU 8 × 2.9 GHz, 16
GB RAM, with OpenGL 4.1.0 and NVIDIA GeForce GTS
450 - 1GB RAM). The parameters σ = 2.8, λ = 0.1 and
µ = 0.15 were optimized on three different datasets and
used throughout the entire segmentation experiments. The
dice coefficient, sensitivity and specificity of the segmenta-
tion were calculated as similarity measures to ascertain the
accuracy of the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 8. Shape prior and the segmentation result in 2D. (a-c) show
shape prior (green) overlaid with ground truth (orange), while (d-f)
show the segmentation (blue) (color online).

Figure 6 shows a shape update on one of the corrupted
datasets. The ground truth has been shown in orange while
the statistical shape model is shown in green. It can be seen
in Fig. 6(e-h) that the statistical model shape update is ro-
bust to the high-density artifacts which corrupted the image
data.

The graphs in Fig. 7 show the results of our method
when the shape prior is added in the regional term (blue
curve) and the boundary term (green curve). The proposed

method was also compared to the fixed shape template of
Freedman and Zhang [10] (red curve) which also adds the
shape prior in the boundary term. The results clearly show
that the segmentation result by adding the shape prior in the
regional term (blue curve) was more accurate than adding
the shape prior in the boundary term (green curve), this was
especially true for datasets (Datasets 15-20 in Fig. 7) with
high-density artifacts. The shape prior in the boundary term
has the effect of smoothing out regions which results in a
portion of the muscle being smoothed out. This can be
dealt with by incorporating the shape prior in the regional
term which allows the flexibility to encode shape knowl-
edge in areas where the intensity alone does not provide
enough knowledge because of the artifacts. In such regions,
the shape prior in the regional term can offset the intensity
likelihood and estimate the likelihood of voxel belonging to
the muscle based on the spatial location of the voxel with
respect to the shape prior. This is the main motivation of
adding a shape prior in the regional term.

Since Freedman and Zhang [10] use a fixed shape tem-
plate as shape prior in the boundary term their results were
worse than our results of adding the shape prior in the
regional term especially for severely corrupted and noisy
datasets. The reason being that a fixed shape template can-
not adapt to the different anatomical shape variations of the
muscle. Majeed et al. [13] has also used a fixed shape tem-
plate both in the regional and the boundary terms with a 6-
neighborhood system to segment the masseter muscle. We
achieved higher segmentation accuracy as compared to Ma-
jeed et al. for the masseter muscle segmentation by em-
ploying a statistical model that accommodates higher shape
variability and a 26-neighborhood system.

Figure 8 shows qualitative results of our technique in 2D,
while the qualitative results in 3D are shown in Fig. 9. We
have used a 26 neighborhood system which has resulted in
better segmentation as compared to a 6 neighborhood sys-
tem. The experimental results obtained using the proposed
method are clinically acceptable as validated by the medical
expert.

6. Conclusion
We have proposed a novel segmentation approach that

combines a statistical shape model with an MRF-based seg-
mentation framework, which is robust with respect to high-
density artifacts. The statistical shape model was learned
using a PPCA based approach which was instrumental in
providing the model with a constrained variability. Using a
constrained variability statistical model has proven to be a
more sensible alternative for constraining the model. The
shape knowledge provided as a triangulated surface mesh
was transformed into the local shape constraints of the re-
gional term of the MRF-based energy functional, and in
the novel manner, the shape was updated over the edge
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(a) (b) (c) (d) (e)

Figure 9. Segmentation result of the left (a-b) and the right muscles (c-e) in 3D.

weighted unsigned distance map in an iterative process. The
method’s performance was shown by segmenting the mas-
seter muscle from CT datasets which is a challenging task
because of the presence of soft tissues in close proximity
as well as imaging artifacts. The results showed that by in-
corporating prior shape knowledge, clinically acceptable re-
sults can be achieved. In future work we plan to use higher
order terms of the MRF-based energy functional to further
increase the segmentation accuracy and to get smoother re-
sults.

Acknowledgment

This work has been supported by the NCCR/CO-ME re-
search network of the Swiss National Science Foundation.

References
[1] A. M. Ali, A. A. Farag, and A. S. El-Baz. Graph Cuts Frame-

work for Kidney Segmentation with Prior Shape Constraints.
In MICCAI, volume 10, pages 384–392, 2007.

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2nd edition, 2007.

[3] V. Blanz and T. Vetter. Reconstructing the Complete 3D
Shape of Faces from Partial Information. In Information-
stechnik und Technische Informatik, volume 44, pages 295–
302, 2002.

[4] Y. Boykov and M.-P. Jolly. Interactive Graph Cuts for Opti-
mal Boundary and Region Segmentation of Objects in N-D
Images. In ICCV, volume 1, pages 105 – 112, 2001.

[5] Y. Boykov and V. Kolmogorov. An Experimental Compari-
son of Min-Cut/Max-Flow Algorithms for Energy Minimiza-
tion in Vision. PAMI, 26(9):1124–1137, 2004.

[6] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-
tive Shape Models; Their Training and Application. Com-
puter Vision and Image Understanding, 61(1):38–59, 1995.

[7] P. Das, O. Veksler, V. Zavadsky, and Y. Boykov. Semi-
Automatic Segmentation with Compact Shape Prior. Image
and Vision Computing, 27(1):206–219, 2009.
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