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ABSTRACT

Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior
knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous
interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper
we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D
shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution
of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov
Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the
MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter
muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all
possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental
fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the
challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with
other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials
can increase the robustness of the proposed method in noisy datasets.
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1. INTRODUCTION

Face being the unique external perceivable identity of a human is of fundamental importance for them. It
represents the individual personality and traits in daily contact with other humans. Underneath the facial skin
is the musculo-skeletal system consisting of bones and soft tissues. Bones and soft tissues are of major importance
for any facial surgical treatment to guarantee an optimal, functional and aesthetical outcome. Facial surgeries
require accurate planning based on available preoperative diagnostic datasets. The current clinical practice is to
segment the facial muscles manually which is a tedious and time consuming task and also increases the overall
cost of the surgery.

Image segmentation is an ill-posed problem, therefore, additional constraints are needed in order to constrain
the solution space and achieve the desired solution. Due to the presence of noise, weak edges, imaging artifacts
and inhomogeneous interior, the use of image information alone often gives unsatisfactory segmentation results.
In order to overcome this problem, prior knowledge about the shape and location of the target structure can
be used to achieve desired segmentation results. The biggest hinderance, however, lies in unifying diverse prior
information from different domains into a single framework.

A wide variety of methods has been proposed over the last two decades. Of all these methods MRF models
provide a harmonious way to incorporate different types of constraints into the segmentation problem. Although
MRF holds a lot of promise due to their flexibility in combining information from different domains elegantly,
they did not receive much attention due to the lack of efficient discrete optimization techniques. With the
introduction of graph-cut by Boykov and Jolly,1 relatively dormant MRF based models came back strongly.
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(a) Side View (b) Frontal View (c) Axial View

Figure 1. (a,b) 3D and (c) 2D views of the masseter muscle (color online).

Traditional graph-cut approaches are very successful at finding the global optimum solution in cases where the
object of interest can be distinguished from its adjacent structures. However, they fail where the adjacent
structures are very similar in appearance to the target structure since the edges are weak.

Many researchers have tried to incorporate prior shape information into MRF based energy functionals, such
as in.2–11 It is, however, very difficult to incorporate prior shape knowledge into graph-cut based approaches. The
approaches of Slabaugh and Unal6 and Zhu-Jacquot,8 tried to spatially constrain the graph-cut segmentation by
incorporating parametric shape information. The parametric techniques, however, have the drawback that only
shapes that can be roughly represented geometrically can be segmented, which is often not the case. Freedman
and Zhang2 used unsigned distance maps of the shape template where the 0-level set defines the shape prior
contour. They encoded this prior shape knowledge in the second order clique potential of the MRF. Xu et al.12

used a combination of active contours and graph-cut optimization to iteratively deform the contour. Statistically
learned shape knowledge can be incorporated in the energy function as shown by El-Zehiry and Elmaghraby7

and Malcolm et al .5 Malcolm et al.5 incorporate prior shape knowledge through nonlinear shape priors. They
learn the prior shape knowledge through statistical learning and use an iterative graph-cut approach to segment
objects.

In this paper we propose a novel segmentation approach integrating shape priors from 3D CT datasets into
graph-cut. We show the applicability of the approach on the difficult problem of segmenting the masseter muscle
Fig. 1.

2. METHOD

2.1 Segmentation Model

We formulate our muscle segmentation problem by minimizing the energy functional

E(z|I,S) = EI(z|I) + ES(z|S), (1)

where z is a binary variable which defines the segmentation, I is the observed image data and S is the shape
prior. Equation (1) consists of an intensity term EI(z|I) and a shape prior term ES(z|S) which are based on the
intensity and shape information respectively. Both the energy terms EI(z|I) and ES(z|S) consists of the first
and the second order clique potential functions of the Gibbs energy function.



2.2 Intensity Energy Function

The intensity information of the target anatomical structure is modeled by the energy functional EI(z|I) which
is based on the traditional graph-cut intensity based energy function of Boykov and Jolly1 and is given by

EI(z|I) = (1 − λ)(1 − µ)
∑

p∈P

V I
p (zp) + λ(1− γ)

∑

p∈P

∑

q∈Np

V I
pq(zp, zq), (2)

where λ is the smoothness parameter, µ and γ are the shape prior parameters for data and smoothness terms
respectively. P is the set of voxels, and Np is a 6-neighborhood system for P . The data term V I

p (zp) encodes
regional properties of the foreground and background. It defines the individual penalties for assigning voxel p
to foreground and background which are calculated from the respective intensity histograms. The smoothness
term V I

pq(zp, zq) encodes the boundary properties of the foreground. It defines a discontinuity penalty between
adjacent voxels p and q when they are assigned different labels.

2.3 Shape Prior Energy Function

The prior shape information of the masseter muscle is encoded into the data and the smoothness terms of the
energy function ES(z|S) given by Eq. (3). Such encoding of the global shape information transforms it into the
local constraints:

ES(z|S) = (1 − λ)µ
∑

p∈P

V S
p (zp) + λγ

∑

p∈P

∑

q∈Np

V S
pq(zp, zq). (3)

The data term V S
p (zp) encodes how likely a particular voxel p is to belong to the foreground “1” and back-

ground “0” given the shape prior S. An unsigned distance map of the aligned shape prior is calculated. Based
on the unsigned distance map, a probability map for the voxels is calculated.

V S
p (zp = “1”) = − lnPr(Sp|“1”). (4)

V S
p (zp = “0”) = − lnPr(Sp|“0”). (5)

Equation (4) and (5) define the penalty voxel p incurs given that it belongs to foreground or background.
These penalties are calculated by creating a probability map for the voxels. Two different probability maps, one
for foreground and other for background are created. The foreground probability map considers only the voxels
enclosed by the shape prior’s contour. The voxels that are farthest away from the contour lie at the center of
the shape and hence are likely to belong to foreground as compared to the voxels close to the contour, which is
computed by Eq. (4) as the negative log-likelihood of belonging to foreground. Thus the voxels at the center of
the shape prior incurs higher penalty to belong to the background as compared to voxels close to the contour.
Voxels outside the contour incur 0 penalty for belonging to background. The opposite is true for the background
probability map, where only the voxels outside the contour are considered. The voxels close to the contour are
more likely to belong to the foreground as compared to the voxels farther away. Thus voxels farther away from
the contour incur a higher penalty to belong to foreground as compared to voxels close to the contour. Voxels
inside the contour incur 0 penalty to belong to the foreground. Freiman et al.4 also creates a probability map
by registering binary image segmentations where as our probability map is created from the unsigned distance
map of the template shape’s contour in 3D. The smootness term V S

pq(zp, zq) is similar to that of Freedman and
Zhang.2

For a facial muscle, a mesh with a representative shape is used as the shape template. The shape template
is calculated by averaging manually segmented muscles. It is then semi-automatically initialized in the dataset
using landmark registration. Algorithm 1 summarizes the segmentation method.
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Figure 2. Qualitative segmentation results in 2D. The top row (a..d) shows the segmentation result in blue, while the
bottom row (e..h) shows the shape prior in red. The overlayed green in both rows show the ground truth (color online).

(a) (b) (c) (d)

Figure 3. Qualitative segmentation results in 3D of left muscle (a-d) of our method shown in blue and overlayed in orange
is the ground truth (color online).



Algorithm 1

Require: An initialized shape template.
Ensure: Graph-Cut segmentation of target muscle.

1. Compute: V S
p (zp) as explained in Sec. 2.3.

(a) Compute: V S
p (zp = “1”).

(b) Compute: V S
p (zp = “0”).

2. Compute: V S
pq(zp, zq).

3. Create graph according to the energy function E(z|I,S).

4. Compute the optimal segmentation using graph-cut.

Similarity Measure
Data Artifact Dice Coefficient Sensitivity% Specificity%

Our Freedman Our Freedman Our Freedman
1 Mild 0.903 0.872 94.34 96.59 99.01 98.30
2 Mild 0.804 0.841 91.81 91.92 98.02 98.56
3 Mild 0.909 0.897 92.13 96.55 99.46 99.03
4 Mild 0.912 0.865 93.20 93.62 99.53 99.05
5 Mild 0.895 0.909 87.52 92.83 99.59 99.43
6 Mild 0.892 0.864 84.38 92.77 99.58 98.08
7 Mild 0.887 0.838 94.33 93.37 99.41 99.06
8 Mild 0.903 0.922 90.66 96.33 99.37 99.22
9 Mild 0.904 0.875 96.86 97.41 99.32 99.02
10 Mild 0.882 0.916 84.69 93.56 99.65 99.51

11 Severe 0.829 0.283 92.40 94.55 96.71 48.76
12 Severe 0.819 0.799 93.45 92.76 98.68 98.50
13 Severe 0.843 0.804 90.91 78.59 98.65 99.08
14 Severe 0.879 0.569 96.37 97.66 98.50 90.51
15 Severe 0.821 0.781 97.38 96.37 97.11 96.35
16 Severe 0.845 0.823 77.25 81.20 99.55 98.74
17 Severe 0.850 0.831 95.86 88.81 98.91 99.08
18 Severe 0.844 0.771 94.23 85.23 98.40 98.03
19 Severe 0.894 0.375 86.35 96.97 99.38 70.39
20 Severe 0.857 0.509 97.31 96.89 98.05 87.94
21 Severe 0.755 0.595 89.20 96.03 97.73 93.89

Table 1. Quantitative comparison of our method with that of Freedman and Zhang.2

3. EXPERIMENTAL RESULTS

The method was tested on 21 CT datasets of the masseter muscle with dataset dimensions 79-118 × 148-214 ×
125-329 voxels and spacing 0.3-0.5 × 0.3-0.5 × 0.3-1mm3. The datasets were noisy with almost all possessing
mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and
dental implants. The datasets were chosen randomly from the hospital repository so that they could represent
anatomical variations. The ground truth segmentations were done by a medical expert. Due to the limited
number of datasets and ground truth the method was evaluated using a Leave-One-Out approach. The ground
truths were used to calculate the mean shape which was then used as the shape template. The parameters
were optimized on three datasets and then the same parameters were used on the rest of the datasets. The



parameter values used were λ = 0.3, µ = 0.02 and γ = 0.004. The dice coefficient, sensitivity and specificity of
the segmentation were calculated as similarity measures to ascertain the accuracy of the method.

Table 1 gives a quantative evaluation of our results and the results of applying Freedman and Zhang2 to the
same datasets for comparison, to which our technique is closely related. Figure 2 shows qualitative results of
our technique in 2D while Fig. 3 shows the results in 3D for the datasets without noise and Fig. 4 (a..d) shows
our results in 3D over noisy datasets. Figure 4 also shows a qualitative comparison of our method with that of
Freedman and Zhang.2

(a) Left Muscle (b) Right Muscle (c) Left Muscle (d) Right Muscle

(e) Left Muscle (f) Right Muscle (g) Left Muscle (h) Right Muscle

Figure 4. Qualitative comparison of the segmentation results in 3D of our method with that of Freedman and Zhang2

over noisy datasets. The top row (a..d) shows our segmentation results, while the bottom row (e..h) shows the results of
Freedman and Zhang2 for the same noisy dataset (color online).

We have also conducted a statistical comparison of our approach with Freedman and Zhang2 and performed
statistical analysis (t-test with signed interval of 0.01). For this we split-up the available datasets depending on
the severity of imaging artifacts. Statistical analysis showed, that for the datasets without imaging artifacts both
methods, ours and Freedman and Zhang,2 performed statistically equally well (p = 0.51), but when comparing
datasets with imaging artifacts our method performed statistically significantly better (p = 0.009) as shown in
Fig. 4. The figure shows our results from (a..d) over noisy datasets while (e..h) show the results of Freedman
and Zhang2 over the same noisy datasets. This clearly shows the increased robustness gained by including a
shape prior in the data term as proposed.

As stated earlier that our contributions is in adding an additional shape prior in the data term while Freedman
and Zhang2 had the shape prior only in the smoothness term. This new shape prior in the energy functional
makes it more robust against noisy datasets. The shape prior in Freedman and Zhang2 has the effect of smoothing
out regions which results in a portion of the muscle completely smoothed out. This can be handled by our method
that incorporates the shape prior in the data term. This also gives us flexibility to encode shape knowledge in
areas where the intensity alone does not provide enough knowledge because of the artifacts. In such regions,



through our shape prior in the data term, we can offset intensity likelihood and say that based on the spatial
location of the voxel with respect to the shape prior, how likely the voxel is to belong to the muscle. This is the
main motivation of adding a shape prior in the data term.

While the segmentations obtained through our method were generally good as can be seen in Fig. 2 and
Fig. 3, there were some areas where it leaked because the shape prior was not accurate enough. The average
running time of the segmentation was within 1-5 seconds. Although the method was not as accurate as a human
expert, the results are clinically acceptable. All results are computed using the freely available implementation
of Max-Flow Min-Cut algorithm of Boykov and Kolmogorov.13

4. CONCLUSION

This paper presents a new way to incorporate shape priors in the MRF framework and utilize graph-cut to
obtain the global solution to segment masseter muscle from CT datasets. Segmenting the muscle is a challenging
task because of the presence of soft tissues in close proximity, but the method shows that by incorporating prior
shape knowledge, clinically acceptable results can be achieved. The contribution of this paper is in transforming
global shape knowledge into the regional energy term.

In future work we plan to replace the fixed shape template, employed in the research, by a statistical model.
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