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Abstract—In this paper, we introduce concepts to reduce
the computational complexity of regression, which are success-
fully used for Support Vector Machines. To the best of our
knowledge, we are the first to publish the use of a cascaded
Reduced Set Vector approach for regression. The Wavelet-
Approximated Reduced Vector Machine classifiers for face and
facial feature point detection are extended to regression for
efficient and robust head pose estimation. We use synthetic
data, generated by the 3D Morphable Model, for optimal
training sets and demonstrate results superior to state-of-
the-art techniques. The new Wavelet Reduced Vector Regres-
sion shows similarly good results on natural data, gaining
a reduction of the complexity by a factor of up to 560.
The introduced Evolutionary Regression Tree uses coarse-to-
fine loops of strongly reduced regression and classification
up to most accurate complex machines. We demonstrate the
Cascaded Condensation Tracking for head pose estimation for
a large pose range up to ±90 degrees on videostreams.

Keywords-Wavelet Reduced Vector Regression; Reduced Set
Vector Machine; Head Pose Estimation; Cascaded Conden-
sation Tracking; Coarse-to-Fine Particle Filter; Evolutionary
Regression Tree; Wavelet Vector Machine

I. INTRODUCTION

Humans are able to immediately predict the position,

orientation, or expressions of faces. Human Computer Inter-

action (HCI) should be as natural as a conversation between

humans. Embodied Conversational Agents must be able

to localize their conversational partner before they initiate

contact. To detect and track the location and orientation

of objects is an important aspect of robotics and computer

vision. Object detection is a binary pattern-classification

problem, in contrast to pose estimation, where parameters

are estimated, e.g. angles of a head. Ultimately, when given

an image or videostream, the aim is to estimate location,

scale, yaw, pitch and roll angles of a face.

Several approaches have been published in the field of

head pose estimation. Often nonlinear regression techniques

are used, e.g. by Ma et al. [1] and others [2], [3], [4].

Chutorian et al. give a good survey [5] over techniques used,

data and results. One of the most accurate pose estimation

approaches, by Balasubramanian et al., is based on Biased

Manifold Embedding [6]. These results are based on the

database FacePix containing only 30 different subjects.

Overfitting and non-uniformly distributed data are two of

the core problems of regression [7]. They can be avoided

by using synthetically rendered images with infinitely many

possible subjects, generated in this work with the 3D Mor-

phable Model of the working group of T. Vetter [8], [9].

Face detection is complex as faces differ in size, rotation,

orientation, illumination, and subjects. Furthermore, glasses

often occlude parts of the characteristic eyes, and specular

highlights occur. In Rätsch et al. efficient classifiers are

proposed which can be adjusted to specific complexity

[10], [11]. The efficiency is obtained by a reduced set of

wavelet approximated support vectors used in a coarse-to-

fine Double Cascade. This Wavelet-Approximated Reduced

Vector Machine, short Wavelet Vector Machine (WVM),

is combined with an extended condensation tracking [12].

Condensation samples more measurement points on regions

of interest instead of using a sliding window approach

or an equidistant grid for sampling. Our former proposed

Cascaded Condensation Tracking (CCT) [13] spends only as

much effort as is necessary for easy to discriminate regions

of the feature space, and most of the effort on regions with

high statistical likelihood of containing the object of interest.

CCT tracks faces robust up to approximately half profile

view. The range from left to right profile view is too complex

for a tracking of the full face space in real-time. To solve

such complex problems efficiently, a strategy of divide and

conquer (D&C) is often used. The feature space is divided in

ranges where specific classifiers are trained. For example, the

pose angles can be divided in subregions. One way, which

is very time consuming, is to use the specific classifiers

in sequence. Sahbi et al. [14] introduced a realization of

divide and conquer using a tree representation for pose-

invariant face detection for the roll angle. At every node,

a full complex Support Vector Machine [15] is used. This

approach is too slow for a pose-invariant face detection of

more than one orientation or for tracking in real-time.

In this paper we propose Support Vector Regression

(SVR) to estimate the orientation of a human head and use

this information for the decision which classifier (trained for
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a subrange of a pose angle) will be used. Regression supplies

no information whether there is a face located at a particular

position of the image or not. First approaches that unify

classification and regression are published [16], but they are

not usable for an efficient coarse-to-fine approach running

in real-time on videostreams, in contrast to the approach

introduced here. Therefore, in this work we use a regression

and a classification stage. A full SVR is too time-consuming

to use for all image locations, and the face space for all poses

is too complex to first decide with a classifier where the

faces are located. Therefore, we will adapt the approaches to

reduce the complexity for classification mentioned above to

regression. Both stages, the classification and the regression,

are adjustable in their complexity. In this work we introduce

a Evolutionary Regression Tree as a coarse-to-fine loop of

regression and classification stages.

The main contribution of this work is the adaption and

extension of the coherent framework we developed for clas-

sification [10], [13], [11] to regression (Section II-B). The

use of the cascaded reduced vector technique for regression

is one of the main novelties (Section II-B2 and II-B3).

Also a new approach for Cascaded Regression is introduced

(Section II-B5) and the adjustable complexity enables the in-

troduced coarse-to-fine Evolutionary Regression Tree (Sec-

tion II-C). We demonstrate very accurate pose estimation

results (Section III), superior to state-of-the-art methods.

Optimally distributed training sets are generated with the 3D

Morphable Model (Section II-D). In our application of the

Evolutionary Regression Tree we demonstrate an efficient

pose-invariant tracking with highly accurate pose estimation

of faces on videostreams (Section III-C).

II. WAVELET REDUCED VECTOR REGRESSION

Nonlinear support vector regression [17], like classifica-

tion, is solved with a kernel function, which leads to high

accuracy and optimal generalization performance, but at the

same time a high computational effort.

If Support Vector Regression is to be applied to a real-time

camera stream, or for estimating several facial features at a

time, it is not practical. Lee et al. proposes a ε-smooth SVR

[18] formulation, where they only need to solve a system

of linear equations iteratively instead of solving a convex

quadratic program or a linear program, as is the case with

a conventional ε-SVR. Second, they propose a reduction of

the kernel, similarly to classification. Those reduced vectors

in the kernel are however a subset of the training data.

In previous work, Romdhani et al. [11] could adapt the

idea of Burges [19], to replace the Support Set Vectors

(SSVs) with a lower number of approximated Reduced

Set Vectors (RSVs), successfully to face detection. The

RSVs are, in comparison to the SSVs, no longer a subset

of the training data, but new data-points. Kukenys et al.

[20] follow a hybrid approach by alternately combining

the global optimization of [19] with the cascade of [11].

Rätsch et al. [10], [13] could further accelerate the evaluation

function significantly by reducing the operations per support

vector based on Integral Images, using a Double Cascade,

and an Over-Complete Wavelet Transformation (OCWT) to

approximate the RSVs by Wavelet Set Vectors (WSVs).

To our knowledge this is the first publication adapting

reduced SVM techniques, like the Reduced Set Vector

approach that is included in our WVM framework, to re-

gression. Literature research yielded only a technical report

by Marconato et al. [21], which is limited to linear kernels.

Now we will introduce step by step the adaption of the

reduction techniques of the WVM from Support Vector

Machines to Support Vector Regression.

A. Comparison SVM and SVR

Because the concepts of the WVM have been developed

for classification, it is reasonable to start by comparing the

two methods. While support vector classification and regres-

sion are similar methods, some important differences exist.

In classification, a binary decision function that separates

training data of two classes is calculated. In regression, a

continuous function is calculated that fits the given data best.

In the following, we will denote all variables concerning

regression with a tilde.

In regression, our training set consists of data in the form

{(x1, y1), ..., (xN , yN )} ⊂ R
d × R. In dual form, support

vector regression involves maximizing the constrained opti-

mization problem

L̃(α̃, α̃∗) = −1

2

N∑

i,j=1

(α̃i − α̃∗i )
(
α̃j − α̃∗j

) 〈xi,xj〉

−ε
N∑

i=1

(α̃i + α̃∗i ) +
N∑

i=1

ỹi (α̃i − α̃∗i ) (1)

with respect to {α̃n} and {α̃∗n}[17]. Solving for α̃i, α̃∗i ,

w and b, predictions for a new input image x ∈ R
d

can be made using f̃(x) =
∑Nx

i=1 (α̃i − α̃∗i ) k(x, x̃i) + b,
where k(·, ·) represents the kernel, which can be shown

to compute the dot products in associated feature spaces

F , i.e. k(x,x′) = 〈Φ(x),Φ(x′)〉. The function Φ : X →
F, x �→ Φ(x) maps the data x (in our case, a vector

of 1024 gray values of a 32 × 32 observation window)

into F . The SVR decision hyperplane is determined by

Ψ
SVR

=
∑Nx̃

i=1 (α̃i − α̃∗i ) Φ(x̃i), with Nx support vectors

x̃i with coefficients α̃i and α̃∗i .

As the minimization problem and its evaluation function

are similar to SVM for classification, most of the WVM-

theory can be adapted for regression. In the following, we

will give a short overview of our WVM framework for

classification. We will then show which of the components

can be used for regression and which need modifications.
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B. Wavelet Reduced Vector Regression

1) Wavelet Vector Machine Core Ideas: The WVM-

framework consists of the four SVM reduction concepts:

i. Reduced set of vectors: Approximation of the support

vectors with a much smaller set of vectors [11].

ii. Integral Images: Integral Image method for the effi-

cient calculation of the kernel.

iii. Wavelet Frame: An over-complete wavelet system to

find the best representation of the WSVs.

iv. Double Cascade: Early rejection of non-objects at the

evaluation over the Wavelet Set Vectors (WSVs):

• Cascade over the number of used WSVs
• Cascade over the resolution levels of each WSV

2) Reduced Vector Regression - Gradient Descent:
Burges [19] proposes an approximation to the decision rule

of the SVM in terms of a reduced set of vectors (RSVs),

which are not a subset of the training data. Depending on

the used kernel, they can be approximated analytically. We

will adapt this idea to regression to reduce time necessary

for computing. Because we found the RBF-kernel to fit

regression data well in previous experiments, we will first

show the reduction with RBF-kernels.

The idea how to reduce SVMs can be adapted to re-

gression, because in both cases a mathematically similar

function is approximated. The decision hyperplane of the

SVR, Ψ
SVR , can be approximated with ΨWVR−R by replacing

the support vectors with a new set of Reduced Regres-

sion Vectors (RRVs) z̃i: ΨWVR−R
=

∑Nz

i=1 β̃iΦ(z̃i), where

Nz � Nx, β̃i ∈ R.

The distance between Ψ
SVR

and Ψ
WVR−R

is minimized:

∥∥Ψ
SVR −ΨWVR−R

∥∥2
=

Nx̃∑

i,j=1

(α̃i − α̃∗i )
(
α̃j − α̃∗j

)
k(x̃i, x̃j)

+

Nz∑

i,j=1

β̃iβ̃jk(z̃i, z̃j)− 2

Nx∑

i=1

Nz∑

j=1

(α̃i − α̃∗i ) β̃jk(x̃i, z̃j) (2)

The Reduced Regression Vectors z̃i and the coefficients β̃i

are calculated iteratively as in [22]. This reduction can be

applied to regression, yielding for the nth RRV

z̃n+1 =

∑Nx̃

i=1 (α̃i − α̃∗i ) exp(−||x̃i − z̃n||2/(2σ2))x̃i∑Nx̃

i=1 (α̃i − α̃∗i ) exp(−||x̃i − z̃n||2/(2σ2))
(3)

and β̃ =
(
K z̃

)−1 (
K z̃x̃

)
(α̃− α̃∗), with K z̃

ij :=
(Φ(z̃i) · Φ(z̃j)) and K z̃x̃

ij (Φ(z̃i) · Φ(x̃j)). The new regres-

sion function for the WVR-R is f̃(x) =
∑Nz

i=1 β̃ik(x, z̃i)+b.

3) Reduced Vector Regression - Analytical for Inhom.
Polynomial Kernel: Burges [19] provides an analytical so-

lution for finding the best RSVs for homogeneous quadratic

kernels. Thies and Weber [23] developed this further and

provide an explicit solution in case of an inhomogeneous

quadratic kernel. The key idea is to follow the approach

of Burges by expressing the inhomogeneous kernel as a

homogeneous kernel on a space having one dimension more

than the original one. This reduction is more efficient than

gradient descent, but not applicable for RBF-kernels.

4) Integral Images for Efficient Kernel Evaluation based
on Wavelet Frame Methods: During evaluation of an SVR or

RVR, most of the time is spent for kernel evaluations. In the

case of the RBF kernel k(x, z̃i) = exp(−||x− z̃i||2/(2σ2)),
chosen here, the computational cost is spent in evaluating the

norm of the difference between a patch and an RRV. The

expanded norm is x′x− 2x′z̃i + z̃′iz̃i. As z̃i is independent

of the input image, it can be precomputed. x′x can be com-

puted efficiently using the integral image [24] of the squared

pixel values of the input image. Hence, the computational

cost of the norm is determined by the term 2x′z̃i.
The Reduced Regression Vectors z̃i can be approximated

by optimal wavelet frame approximated reduced regression

vectors (WRVs) ũi, which have a block-like structure, as

seen in Fig. 5. If ũi is an image patch with rectangles of

constant gray levels, then the term 2x′ũi can be evaluated

very efficiently using the integral image. The term can be re-

sorted by 2x′ũi = 2
∑D

k=1 xkũi,k = 2
∑Ri

r=1 vi,r
∑Dr

j=1 xj

where D is the dimension of the vectors (e.g., 1024 pixel

with a patch-size of 32×32), Ri is the number of rectangles

of ũi, vi,r the gray values of the rectangle r and xj , j =
1, ..., Dr all pixel-values of x within the r-th rectangle.

Because
∑Dr

j=1 xj can be computed by the addition of

three pixels of the integral image of the input image [24],

the dot product is evaluated in constant time.

The Integral Image method works for the RBF kernel,

as well as the polynomial kernel. In case of a polynomial

kernel, x′x and ũ′iũi vanish and the remaining x′ũi can be

calculated efficiently using integral images with the method

described above.

5) Cascaded Regression: For the analytical solution from

Section II-B3, the different sets of {β̃j}, j = 1...i for each

WRV z̃i, necessary to run the evaluation function cascaded,

are not available. Thus, the analytical WVR-R is not usable

for cascaded regression without modifications.

We cannot directly adapt the cascade from the WVM clas-

sification framework, because there are no negative patches

that could be rejected early. We introduce a new method for

fast, efficient cascaded regression for RBF kernels.

For most of the image locations, a few WRVs at low

resolution levels suffice to get a rough estimate of the angle.

This is due to the fact that the WRVs ũi, i = 1, ..., N ũ are

ordered, each one with its own set of weights. As seen in

Fig. 1, often, the estimation of the angle converges early and

does not significantly improve further, so that an evaluation

of all the available WRVs is unnecessary. To that end, we

measure the gradient δ = ∂/∂ũ g(f̃(ũi,x)) at ũi, where

g is obtained from the evaluation function f̃ by applying a

moving average operator of size k, and the scattering η =

262



∑i
j=i−k(g(f̃(ũj ,x)) − f̃(ũj ,x))

2 over the k last WRVs.

The next ũi+1 is only incorporated if δ and η are larger than

given thresholds t1 and t2. The parameters of the Cascaded

Regression algorithm k and t are optimized such that the

average of the used number of WRVs over all patches is

smaller than using a constant number of WRVs.

With this cascade of wavelet vectors, a WVR is very

efficient compared to a WVR-R. The complexity is smoothly

adjustable, and the WVR is optimally suited for the first

stages of the Evolutionary Regression Tree introduced in

Section II-C. For example, a cascaded WVR that uses 490

WRVs on average, performs with an average error of 8.26◦,
while a WVR-R with the same complexity performs approx-

imately 2.9 times worse (23.50◦) on the same test data. Thus,

the WVR is very well suited for a fast, computationally

efficient approximation of the angle.

Figure 1. Cascaded Regression: Use only as many WRVs per patch as
necessary to compute the angle with an adjustable accuracy. For many
patches, the WVR converges early and does not significantly improve
further (e.g. cyan dash-dotted curve; the red line shows the k last WRVs of
the cascade). However, in some cases, convergence takes longer (e.g. red
dashed curve). Thus, a cascade over the WRVs is used.

6) Evaluation of the Comprehensive Wavelet Reduced
Vector Regression: Replacement of the RRVs z̃i with the

WRVs ũi leads to the new Haar-like hyperplane for regres-

sion ΨWVR =
∑Nz̃

i=1 γ̃iΦ (ũi), which is an optimal approx-

imation of the original hyperplane. The {γ̃i} correspond to

the {β̃i} of the WVR-R and are calculated similarly.

The WVR evaluation function for the comprehensive

WVR (with Wavelet-Frame, Cascade and Integral Image)

of resolution level l at the ith reduced vector for an input

image x becomes:

f̃ l
i (x) =

l−1∑

h=1

Nh
z̃∑

j=1

γ̃l,i
h,jk(x, ũ

h
j ) +

i∑

j=1

γ̃l,i
l,jk(x, ũ

l
j) + b. (4)

C. Evolutionary Regression Tree

The goal of the proposed work is to track and to estimate

the pose of objects in videostreams. The orientation of a

head can be estimated by regression, but no certainty is

obtained whether there is an object located or not. Therefore,

we use a two stage approach, consisting of a regression and

a classification step.

Detecting a specific object in an image is computationally

expensive, as all the pixels of the image are potential object

centers. The hypothesis space for faces is very large, because

of the different appearances in expression, in pose and

individual differences. If the feature space is too complex to

obtain reasonable classification results with a single classifier

by acceptable effort, often, a strategy of D&C is used. The

feature space is divided, e.g. in ranges of different pose

angles and specific classifiers are trained for each subspace.

To use all these classifiers in a sequence one after the other is

often too time consuming, especially if the space is divided

in different dimensions, e.g. yaw angles, and each of these

parts is divided again in different pitch angles, and so on.

The here proposed alternative is to estimate the pose angle

by regression first and then to use the classifier specifically

trained for the estimated pose range. Hence, we use two

stages: One regression step to estimate the parameter for

the divide and conquer strategy and one stage for the

classification. The problem is in which order to use them.

To first use the complex regression for all possible locations

is too time-consuming. Also to first classify all locations for

all poses is too complex for one classifier in reasonable time.

Similar to evolutionary programming we use a coarse-

to-fine looped strategy, called Evolutionary Regression Tree

(ERT). Starting with a weak but very efficient regression step

we obtain a rough estimation of the parameter to decide

which specific classifier will be used at the next stage.

These weak classifiers reject first feature space locations

(e.g. pixels of the image as potential object centers) for

the specific areas. In the next loop of the evolutionary

strategy a more complex regression can be used for the

remaining locations, leading to more accurate estimations

to decide which specific trained classifier will be used next

in this loop. For the much smaller amount of remaining

patches, stronger specific classifiers are used to reject objects

of no interest much more precisely, and the next loop is

started. The evolutionary loops can be repeated until the final

remaining object locations are found and the estimation of

the now full complex Support Vector Regression is used to

obtain the best final estimation results.

In Section III-C we propose a first version of the in-

troduced ERT based on coarse-to-fine Cascaded Regression

stages introduced in Section II-B5 and also adjustable Dou-

ble Cascaded WVM classifiers summarized in Section II-B1.

D. Synthetic Images for WVR
1) Disadvantages of Natural Data: SV Regression faces

the problem that training with non-uniform distributed data

introduces a bias in the estimation of new values. When

particular angles are overrepresented in the training data, e.g.

the yaw angles 0◦ or 30◦, as is often the case, the regression

estimation will tend more towards these values [7]. This
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makes the training process difficult, as natural data at bigger

angles are difficult to obtain. For instance, in face databases

like MultiPie and CasPeal (see Section III-A), such data

are highly underrepresented. Also, in each database, only a

subset of angles is available, so that it is difficult to train a

regression machine for a continuous function from −90◦ to

90◦ yaw angle. Another problem is the inter-database angle

annotation variance - an example subject in MultiPie at

45◦ does not look like it was taken from the same angle

as a subject from CasPeal at 45◦. This is due to different

conditions in which the pictures are taken, e.g. single-shot

versus camera rotating around the subject, etc.

For those reasons, we start with using synthetic data

generated by the 3D Morphable Model (3DMM) [8], [9].

With the 3DMM, faces of any pose angle, illumination,

shape and texture variation can be generated freely (see

Fig. 2). For our application, this has the advantage that we

can generate faces from a yaw angle of −90◦ to 90◦, in a

1◦ interval, to train a WVR that can accurately handle the

whole domain of angles. Additionally, we do not introduce

a bias because particular angles are not underrepresented.

Furthermore, we have a very accurate labeling.

Evidently, synthetic data have some disadvantages of their

own. With the current 3DMM, it is not possible to model

facial hair or glasses, so they clearly lack some variance

that is occurring in natural data. This can be compensated

by also including some natural data to the training set, while

keeping the advantages of synthetic data.

III. PERFORMANCE OF REDUCED SUPPORT REGRESSION

AND APPLICATIONS

In this section, first the datasets used are described,

then results are shown for the SVR and WVR-R. The

performance is compared to leading head pose estimation

approaches, and finally, a first application for the efficient

comprehensive WVR head pose estimation is introduced.

A. Datasets
In our experiments we used synthetic data Synth con-

sisting of data generated by the 3DMM. We generated 150

random faces per degree, from a yaw angle of −90◦ to

90◦, in a 1◦ interval, resulting in a total of 27,150 different

faces. Each face was generated randomly with a quite large

variance in the principal components of the 3DMM for

the shape and texture, so that each face is a different

subject. Additionally, a realistically large variance of the

illumination was chosen, to mimic conditions that occur in

real images. Some example pictures are shown in Fig. 2.

To make the scenario as realistic as possible, a background

was added to each image, chosen randomly from a list of

4,135 background images. These images were cropped and

scaled to a resolution of 32× 32 pixels. 100 of the images

per degree were used for training and 50 for testing.

For natural data, the CasPeal [25] database was used for

both training and testing. This database is a large database of

Figure 2. Example data from the 3DMM. Different, random generated data
at different yaw angles. From left to right: 35◦, 55◦, −45◦, 80◦, −20◦.

Chinese face images, with 1,040 individuals acquired with

nine cameras spread across varying yaw angles and varying

illumination. Three pitch angles were acquired by asking

the subject to look forward, up and down in front of the

nine cameras. The pitch angles were approximately −30◦,
0◦ and 30◦. The pictures from the nine cameras were taken

simultaneously within two seconds.

Also used for training were images from the MultiPie
[26] database and FacePix database [27]. The MultiPie
database consists of face images of 337 individuals, ac-

quired with 15 cameras and 19 illumination conditions. The

FacePix database consists of face images of 30 individuals

with frontal pitch and yaw angles ranging from −90◦ to 90◦

with one image per degree.

B. Head-pose Estimation Results of the Reduced Support
Regression Training

1) Support Vector Regression Training: First a full SVR

is trained to estimate the yaw angle of the head pose. Sup-

port Vector Regression is known to obtain best regression

performance, but is very time consuming. We compare our

trained SVR with the most promising existing approaches

for head pose estimation, introduced in Section I. As nearly

every work uses different data for testing and different pose

angle variations, we use an SVR trained on a yaw angle of

±90◦ to obtain a fair comparison. For example, [6] train on

a yaw angle of −90◦ to 90◦, in steps of 2◦, and are able

to achieve an average error in yaw angle of 1.44◦ using

FacePix as training and test set. Chutorian et al. [3], using

support vector regression, but another feature space and no

reduction, operate on a yaw angle of −80◦ to 80◦ and a

pitch angle of −30◦ to 30◦. They are able to estimate the

yaw angle with a mean absolute error of 6.40◦. Ma et al.

[2] operate on a yaw angle of −60◦ to 60◦ and a pitch

angle of −30◦ to 30◦ and report a yaw error of < 7.5◦ for

88.6% of the test data. Fig. 3 shows the obtained head pose

estimation results for our SVR trained on the set Synth . With

an average error of 1.30◦ on a range of ±90◦ we obtain the

best results compared with leading approaches. This results

in an error of ≤ 5◦ on 90.7% of the subjects.
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But similar to [6], despite having generated the most

natural looking data as possible, the train and test sets are not

as complex as images from real-life use cases. To overcome

this limitation, we included subjects from the CasPeal -
database into the training set, now consisting of synthetic

and natural images. Results on the natural database CasPeal ,
for subjects not in the training set, are shown in Fig. 3. Our

approach shows promising results, but it has the drawback

of a very complex, slow SVR. We will address this next.

Figure 3. SVR performance on Synth and CasPeal : Blue (dashed):
Performance of the synthetic full SVR tested on synthetic test data. Red
(dash-dotted): SVR trained with the same synthetic data, additionally with
real data from CasPeal . Tested on real CasPeal images of different
subjects. We see a small drop in performance for the real dataset, but still
with very good results (90.7% have an error of ≤ 5◦).

2) Results of Reduced Support Regression Training:
Now the results of the reduction of the full SVRsyn+cas

shown in Fig. 3 are demonstrated. First we approximate

the full set of support vectors of the SVR by a smaller

set of Reduced Regression Vectors (RRVs), as described

in Section II-B2. An RBF kernel is used, with a grayscale

feature space and histogram equalization as normalization.

As seen in Fig. 4, the SVM with 17,362 SSVs can be highly

approximated by a WVR-R with 300 RRVs, a decrease in

computation complexity by a factor of 58. The average error

on the CasPeal test set has only increased by 0.87◦. This

makes our approach suitable for real-time application to

videostreams without losing much accuracy. The SVR can

even be reduced further to 100 RRVs without suffering from

a large performance decrease. With only 100 RRVs, still

74% of the images have an error of ≤ 5◦, yielding a 174

times faster regression for a rough first estimation stage.

As demonstrated in Section II-B4 and II-B5, the gained

runtime performance is improved in the final application by

taking advantage of the Integral Image and Cascaded Regres-

sion concept of the Wavelet Reduced Vector Regression.

Optimal results are obtained by the comprehensive WVR

including all the core ideas introduced in Section II-B. Fig. 5

shows some examples for Wavelet Regression Vectors from

the Double Cascade of a WVR. By taking advantage of

the Cascaded Regression (introduced in Section II-B5) the

coarse-to-fine method is used to find a good approximation

of the angle after just a few resolution levels, not running

up to the last vector if the resulting angle is already clear

and only marginally changing. This leads to an optimal

and adjustable balance between run-time performance and

accuracy. The adjustable complexity and efficiency of the

WVRs gives us the opportunity to build up the Evolution-

ary Regression Tree (Section II-C). Therefore, head pose

estimation in real-time is feasible. A high accuracy of the

pose estimation is obtained because the full Support Vector

Regression estimation is used at the last coarse-to-fine stage

of the Evolutionary Regression Tree.

Figure 4. Reduction: Full SVR from Section III-B1 with additonal natural
data tested on CasPeal test set (red line); WVR-Rs with reduced sets
of vectors - 300 (red dashed), 210 (green dashed-dotted) and 100 (blue
line with dots), instead of the 17,362 support vectors of the full SVR.
A reduction of the computational complexity by a factor of 58 to 174 is
obtained.

Figure 5. Examples for Wavelet Regression Vectors from the Double
Cascade. The first row shows the 1st, 2nd, 8th, 17th and 36th WRV at
one of the first, very coarse approximation levels. The block-structure is
clearly visible. The second row shows the same WRVs at a finer resolution
level.

3) Improvements for Natural Data based on Feature
Space Transformation and Analytical Reduction: As an

experiment with natural data and analytical SVR reduction

over a smaller yaw range, a training set for yaw pose angle

was formed from portions of the CasPeal , MultiPie and

FacePix data (see Section III-A). For CasPeal training the

yaw angle ranged from −30◦ to 30◦ yaw, with all three pitch

poses included and 771 individuals and 11,099 images. For

MultiPie, 3,684 images were used, randomly selected from

images with −30◦ to 30◦ yaw angle and 0◦ pitch angle and

varying illumination. For FacePix , 1,606 images were used,

with yaw angles ranging from −36◦ to 36◦ yaw and 0◦ pitch.
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For testing, a portion of CasPeal with 269 individuals

and 3,885 images and again yaw angles from −30◦ to 30◦

yaw and the three pitch angles were used. Individuals in the

training set were not used in the testing set.
Faces and eyes were found using commercial detectors.

Advanced features with better discriminative power were

used as input for the Support Vector Regression rather than

simple grayscale features. These features are proprietary

and used in a commercial system, so no further details

can be made public. For the regression, an inhomogeneous

quadratic kernel was used in order to utilize an efficient an-

alytic reduction technique [23] rather than gradient descent

(see Section II-B3). Using this technique allowed a reduction

from 11,463 SSVs to 25 RRVs with almost no change in

performance. These results can be seen in Fig. 6 for the

CasPeal testing results. Approximately 80% of the images

had errors less than 4◦ for a fully automatic algorithm.
Tests were only done with a WVR-R and not with a com-

prehensive WVR using Cascaded Regression and Integral

Images, because the cascade idea is not easily applicable

to the analytically found vectors, and the Integral Image

approach is not usable for these advanced feature vectors.
The results of the improvements introduced here show

a stronger reduction of the computational complexity by a

factor of up to 560 and a higher estimation accuracy. The

approach is suitable for natural data in uncontrolled and

uncooperative conditions (e.g. large range of pose angles).

Figure 6. Improvements for Natural Data using feature space transformation
and polynomial kernel, enabling analytical optimization technique. Extreme
reduction of computational effort by no significant loss of accuracy.

C. Application
1) Measurement: The performance and accuracy of the

object tracking and pose estimation is demonstrated on an

example of pose invariant face tracking in videostreams.

The Evolutionary Regression Tree (ERT) introduced in

Section II-C is applied on the former proposed Cascaded

Condensation Tracking (CCT) [13]. Coarse-to-fine evolu-

tionary loops based on the adjustable complexity of WVM

classifiers (Section II-B1) and WVR pose angle estimations

(Section II) are realized.
CCT uses a contraction of the sampling locations in the

features space to areas based on the probability density

function (PDF) obtained by its measurement function. A

WVM consists of four stages, the first stage (i) is a WVM

Double Cascade to reject most of the non-object sampling

points. It is followed by: (ii) a first Overlap Elimination (OE)

reducing the number of samples per object cluster, (iii) the

full complex SVM, (iv) a second OE and (v) a reduction of

clusters to a number of expected objects.

The loops for the PDF measurement are realized starting

with the WVM stage (i) of a global WVM classifier, trained

as root node of the ERT over the full pose range from full

left to full right profile (±90◦ yaw). Less than 30% of the

samples are remaining depending on the complexity of the

background of the video stream. After the 1st OE stage (ii),

the first, weak and most efficient WVR estimation of the

pose angle is used to decide which one of the branches will

be continued. In case the angle lies near the border of two

subranges, two branches are used. At the moment the three

ranges -90◦ to -40◦, -40◦ to 40◦ and 40◦ to 90◦ are used.

Both WVR stages are very efficient, taking advantage of

the Cascaded Regression method (Section II-B5). Efficient

WVM Double Cascades trained for that specific subspaces

are obtained. After a next OE the full SVR estimation is

used to obtain the final most accurate pose estimation. This

estimation over the last remaining patches (typically less

than 1%) is used to decide which specific trained full SVM

stage (iii) will be applied next. A final OE and a reduction

of clusters (stages (iv) and (v)) are applied.

2) Tracking: The PDF consisting of the measurement

from the previous section is very accurate for the remaining

positive samples, but also used for the rejected samples.

The new sample distribution function is computed from the

PDF as published for the CCT [13]. The gained frame rate

depends on the used hardware, complexity of the back-

ground, number of used image pyramid scales and number

of persons. Fig. 7 shows tracking results on few frames on

a videostream in real-time with more than 15fps on a Core

i7 with a webcam using a VGA 640x480 pixel resolution.

Figure 7. Example ERT tracking results on frames of a videostream.

IV. CONCLUSION

We were able to successfully develop a framework for

real-time Support Vector Regression, based on previous

work for support vector reduction. Where direct adaption

was not possible, for example the cascade, we found new,

similar solutions. We demonstrate this new Wavelet Reduced
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Vector Regression approach on the task of head pose esti-

mation of human faces. The proposed novelties make this

approach real-time capable up to full profile view, improving

our Cascaded Condensation Tracking. We showed a fast

kernel evaluation based on Integral Images and a Cascaded

Regression, which automatically uses the optimal number

of WRVs. Using an Evolutionary Regression Tree, we were

able to combine the classification and regression step of face

detection and pose estimation. The tree uses a coarse-to-fine

approach, such that it is capable of handling the huge space

of faces and pose angles in real-time.
In future work, we wish to investigate the possibility

of simultaneously estimating the three pose angles using

regression for multi-dimensional labels [28]. We plan to

combine the advantages of the analytical reduction of the

polynomial kernel with the advantages of Integral Images

and our Cascaded Regression.
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