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Abstract

Fitting statistical 2D and 3D shape models to images is

necessary for a variety of tasks, such as video editing and

face recognition. Much progress has been made on local

fitting from an initial guess, but determining a close enough

initial guess is still an open problem. One approach is to de-

tect distinct landmarks in the image and initalize the model

fit from these correspondences. This is difficult, because de-

tection of landmarks based only on the local appearance

is inherently ambiguous. This makes it necessary to use

global shape information for the detections. We propose

a method to solve the combinatorial problem of selecting

out of a large number of candidate landmark detections the

configuration which is best supported by a shape model.

Our method, as opposed to previous approaches, always

finds the globally optimal configuration.

The algorithm can be applied to a very general class of

shape models and is independent of the underlying feature

point detector. Its theoretic optimality is shown, and it is

evaluated on a large face dataset.

1. Introduction and related work

Fitting two or three dimensional models of objects – such

as faces – to images has been used to great effect in many

applications, for example face recognition [8, 22, 30, 5] and

video editing [10, 2, 6, 27, 25]. Statistical shape models

are fitted by maximizing the posterior of the model param-

eters given an observed image. Even for simple models

such as Active Appearance Models (AAM, [8, 17]) or 3D

Morphable Models (3D-MM [3]), this posterior has a com-

plex shape and is defined over a high dimensional space,

making it impossible to find its global maximum. In-

stead, most algorithms are concerned with the efficient lo-

cal maximization of the posterior starting from an initial

guess [8, 17, 1, 28, 23]. In some applications the initial

guess can be obtained from a face detector [26], but if the

face is non-frontal, or a highly precise fit is required then it

is necessary to start with a better initialization.

One way to specify an accurate initialization is by de-
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Figure 1. Our algorithm selects the optimal set of candidates (b)

from a large number of candidate detections (a) while searching

only a small fraction of the search space using a greedy search tree

(c) in a branch and bound approach. The solution space (number of

possible ways to select candidate points) for this example contains

2×10
17 candidates, and the optimal one was chosen with only 82

tests. If for some landmarks the correct detection is not included

in the candidates, it is automatically replaced with its most likely

predicted position. This happened here to the left ear, and the

lower lip. Note that the search tree is very degenerate, because our

algorithm successfully prunes large areas of the search space.

tecting landmarks, correspondences between points in the

model domain and points in the image. These are detected

with sliding window detectors such as [26]. See [29] for

a survey of this area. These detectors classify each patch

of the image separetely as being one of the landmarks or

the background, the positions that match are then typically

clustered and the cluster centers returned. This works rel-

atively well for such as as frontal faces which have a rela-

tively unique appearance. But detecting landmarks such as

the corners of the mouth or the tip of the nose is inherently

more difficult, as these image patches are ambiguous. Many

patches in an image look exactly like a corner of the mouth,

if they are not seen in the larger context of the image.

A patch-based landmark detector will therefore return a

number of false positive matches (detections of the land-

mark at the wrong positions), and for some landmarks also

false negatives (no detection at the correct position). The

algorithm presented here takes the output from a large (i.e.

23) number of landmark detectors and determines which are

the correct detections. The candidates whose configuration

can be best explained as resulting from a face are chosen.

This is formalized as searching for the candidates which re-

1



sult in a shape model fit with minimal residual.

For N landmarks and K detections per landmark there

are KN possible combinations to consider. For typical im-

ages this is 20 landmarks and on average 7 detections per

landmark, resulting in 720 ≈ 1016 combinations. Nonethe-

less, we are able to find the optimal configuration within

less than a second by efficently discarding large areas of the

search space by using the branch and bound framework in-

troduced in [15]. Branch and bound has been used before in

computer vision, for example for efficient object detection

in [14] and to estimate camera parameters from matches be-

tween 2D image points and a 3D model in [12, 7] and [18].

The latter is more closely related to our work, as the deter-

mination of the camera parameters from a correspondence

between 3D points and 2D landmarks is repeatedly solved

as a subproblem within our algorithm. The difference is,

that we simultaneously solve for the correct camera (and

potentially shape) parameters and the image position.

The problem of choosing the right detections out of a

candidate set has been addressed before with a stochastic

search using RANSAC [9]. In [24] a RANSAC based algo-

rithm with a fast rejection test was introduced which solves

the same problem. The advantages of our algorithm are that

we guarantee to find the globally optimal solution, and that

our formulation is general enough to encompass different

camera and shape models.

A closely related search method was presented in [16].

They formulate AAM fitting as an instance of the A* al-

gorithm, which is itself an instance of branch and bound

for graph search. Similar to our approach, [Lekadir and

Yang] find an optimal fit by constraining the position of un-

known landmarks with the help of landmarks which are al-

ready known. The algorithm presented here differs in that

we can handle arbitrary shape models, and that we bound

sets of landmark candidates, while [16] bound partial so-

lutions where only a single landmark is picked from each

set of candidates. Our method can therefore mimick the be-

haviour of [16], but more efficient search strategies can be

implemented and are compared in this paper. Also, we show

how to use branch and bound search for different models,

instead of developing a solution for 2D AAMs.

2. Problem Formulation

We require a shape model, which is a function

M(Θ) = (m1(Θ), . . . ,mN (Θ)) mi : R
NΘ → R

2 (1)

mapping the NΘ dimensional vector of model parame-

ters Θ to image positions mi(Θ). This can for example be

a 2D Point Distribution Model [8] or – as used throughout

this paper – a fixed 3D Shape projected according to a weak

perspective camera. It is also possible to use a full 3D shape

model, but for expressionless faces this is not necessary to

select the correct landmarks out of the candiates.

For each projected point mi a set of candidate positions

Li = {l1i , l
2
i , . . . } l

j
i ∈ R

2 (2)

is detected in the image, using any object detector. Detec-

tion is not the topic of this article, any classifier applied in a

sliding window manner can be used. Obviously, the better

the detector, the better the final results. Also, even though

our formulation can handle a relatively large fraction of oc-

cluded or undetected points, we are unable to find the cor-

rect position if for more than 20% of the model vertices no

correct detection is included in the candidate set.

The task is to assign to every model point one of the

candidate positions such that the shape model can be best

fit to the selection. Let us denote a selection S by the tuple

S = (j1, j2, . . . , jN ) ji ∈ N, (3)

where ji is the index of a candidate of landmark i. We

choose the selection S
∗ which minimizes the distance be-

tween the shape model and the image landmarks:

S
∗ = argmin

S=(j1,...,jN )

f(S)

f(S) = min
Θ

∑

i

ρ
(
∥

∥

∥
mi(Θ)− l

ji
i

∥

∥

∥

)

. (4)

Here ρ : R → R is a robust function acting on the distance

between the projected model vertices and the detected can-

didate points. We use the Huber distance [13], which be-

haves like the squared distance up to some point and then

switches to the absolute distance. To some extent this al-

lows us to handle missing detections, and points which are

invisible due to occlusion.

3. Branch and Bound

The problem as formulated above is a discrete optimiza-

tion problem. The number of possible selections S within

the candidates is exponential in the number N of points of

the model, growing as KN for K candidates. Nonetheless,

we are able to efficently find the optimal selection with the

help of branch and bound [15]. In this section we reca-

pitulate branch and bound in its general formulation using

the terminology introduced in the previous section, and then

flesh out the parts which constitute our algorithm.

Branch and bound finds the element S∗ in a set S =
{S1,S2, . . . } which minimizes a function f(S). The idea is

to reason not over single elements, but over sets of elements,

which can then be discarded in whole. It uses a function

defined over subsets P ⊆ S which bounds the value of the

cost function for the elements in the subset from below:

g(P) ≤ min
S∈P

f(S) . (5)



Additionally, we require that for sets consisting of only a

single entry the lower bound is tight:

g({S}) = f(S) . (6)

The general branch and bound procedure is

1. Start with the set of all elementsQ = {S}

2. Repeat:

(a) Take the minimal subset

Pi ← argmin
Pi∈Q

g(Pi) ; Q ← Q \ {Pi}

(b) Return S if Pi = {S} is a single element.

(c) Split Pi into

P1

i
⊂ Pi, P2

i
⊂ Pi s.t. Pi = P

1

i
∪ P2

i
.

(d) Add the new subsets to the candidates

Q ← Q∪ {P1

i
,P2

i
}

A branch and bound algorithm for a specific problem, such

as the one solved in this paper, needs to specify (1) the cost

function f which is minimized (2) a bounding function g

which is as tight as possible but efficient to evaluate, (3) the

representation of the candidate sets, such that one does not

have to store all members of P explicitly, and (4) a splitting

strategy which splits a given P into new subsets P1
i ,P

2
i .

In practice, Q is implemented as a priority queue, such

that it is cheap to select the set of candidates with the mini-

mal value of the bounding function.

4. Landmark Detection with Branch and

Bound

In this section we specify the four ingredients necessary

to define the branch and bound algorithm for landmark de-

tection. All sets defined here are finite, but to avoid the

clutter of having to introduce a variable for the cardinality

of every set we leave the count implicit.

4.1. Cost Function

The cost function was specified in Equation 4, it is the

residual of the optimal fit of the model to the chosen candi-

date points.

4.2. Bounding function

Branch and bound requires a function g(P) operating on

sets of selections which bounds the cost function f(S) from

below, such that g(P) ≤ minS∈P f(S). Calculating a g

which exactly returns the value of the optimal selection is

as hard as solving the original problem, we therefore need

to construct a bounding function which can be efficiently

evaluated but has a bound which is as tight as possible. Re-

member that f is defined as the minimum residual which

can be reached when fitting the model to the candidates in a

selection. We now relax g(P) such that it does not minimize

the distance towards the optimal selection within P , but in-

stead towards the convex hulls of the candidate points in the

Selections: {S1,S2,S3,S4}:

P:
Nose
Left Eye

Right Eye

Right Corner of the Mouth

Left Corner of the Mouth

Candidates:

Figure 2. During the branch and bound search we consider sets

of selections, which are defined by one subset of the candidate

points for each landmark. The Cartesian product of the choosen

candidate points for each landmark defines a subset of selections.

The figure shows candidates for some landmark points (colored

circles), and a choice of subsets of each landmark (denoted by

the enclosing polygon). All four selections S1, . . . ,S4 which are

included in the set P are listed in the lower part of the figure.

For real-world problems there are up to 16 candidate positions per

landmark and up to 23 landmarks, leading to much larger sets,

which still are compactly represented by the subsets of candidates

points.

selections in P . Denote the union of all candidate points of

the ith landmark which are included in any selection S ∈ P

by Pi, and by l
Pi

i = {l
j1
i

i , l
j2
i

i , . . . } the corresponding land-

marks. Then the sum of the distances towards the convex

hull of the candidate points in Pi

g(P) = min
Θ

∑

i

ρ
(

dconvex hull(l
Pi

i ,mi(Θ))
)

dconvex hull(l
P

i ,x) = min
c∈convex hull(lP

i
)
‖x− c‖ , (7)

is a lower bound on f , as we have only added more points

towards which the distance is calculated. So for monotone

ρ we have defined a suitable bounding function g, which

can be evaluated efficiently by fitting to convex polygons

instead of fitting to landmarks.

Our algorithm assumes that such a fit can be calculated

efficiently, and that the fitting is convex, or at least that for

all interesting poses the optimal fit can be obtained from

the initial position. Our experiments show, that this is the

case for the shape model and distance used as an example

throughout this article. Recall, that we are using the Huber

distance and a constant shape model with a weak perspec-

tive projection.

4.3. Representation of sets of selections

The use of convex hulls of the active candidate points

naturally leads to a compact representation of sets of selec-

tions P . We define the elements S ∈ P to be the Cartesian

product of active candidates Ai for each landmark i. That

is, we encode the sets of selections as tuples of sets of active
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Figure 3. Different splitting strategies result in vastly different per-

formance. Note that the often used strategie ‘split into equal sized

problems’ is one of the worst strategies for branch and bound.

Note the logarithmic scale.

candidates,

P = (A1, . . . ,AN ) Ai = {j1i , j
2
i , . . . }. (8)

Such a set of selections contains all combinations of active

landmarks in this set, such that we can also write

P = {S = (j1, . . . , jn) | j1 ∈ A1, . . . , jN ∈ An}} . (9)

Even though we defined P twice, once as a set of selections

in Equation 9 and once as its encoding in Equation 8, it will

always be clear from context which definition we are using.

Refer also to Figure 2 for a visualization of the encoding

concept.

This is a very compact representation of combinatorially

many solutions which can be implemented as a simple tuple

of bitmasks.

4.4. Splitting Strategy

The choice of a suitable splitting strategy is crucial for

a branch and bound algorithm to be efficient. A strategy is

good, if it leads to a fast isolation of the correct solution and

splits the remaining candidate sets into sets for which the

lower bound is larger than the function value of the solution.

Obviously, one can not efficiently search for the optimal

splitting sequence, therefore a strategy has to be choosen

which is expected to perform good, and is cheap to apply.

With our formulation a disjunct split of a candidate set

P into two subsets P1,P2 can be achieved by choosing one

landmark, and within this landmark splitting the candidates

into two disjunct sets. We only considered splits where the

candidate points were split either along the horizontal or

vertical axis. Splitting along a line ensures that the convex

hulls of the resulting partitions do not overlap, axis aligned

splits were used because this reduces the number of pos-

sible splits to twice the number of landmarks, allowing us

to define the splitting strategies as objective functions over

splits, which are minimized by complete enumeration.

We tested a large number of splitting strategies as tab-

ulated in Figure 3, and found that their behaviour differs

a lot. The most efficient strategy we found is to divide

the candidate point sets such that the distance of the con-

vex polygons of the split landmark candidates was maxi-

mal. The worst performing methods split the problem into

equally sized subproblems, while the best performing meth-

ods rapdily increase the lower bound. It is conceivable that

even better strategies can be devised, or learned from exam-

ple problems. This is a venue for further research.

5. Scale

The cost as formulated in Equation 4 prefers smaller

faces over larger faces, if these are detected, because the

residual is calculated from the image distances. This could

be overcome by normalizing with respect to the scale, but

the resulting cost function is then more expensive to opti-

mize. Instead, we exploit that the landmark detector any-

how has to search over multiple scales, and we therefore

know the approximate scale of the face in the image. The

image is resized to a pyramid of scales, and at each pyra-

mid level we perform a candidate point detection and land-

mark selection, where the landmark selection is constrained

to faces which have a minimum size corresponding to the

size at which the landmarks are detected. To constrain the

search, we add a regularization term to the cost function,

resulting in

f(S) = min
Θ

(

∑

i

ρ
(∥

∥

∥
mi(Θ)− l

ji
i

∥

∥

∥

)

+ r(scale(Θ))

)

(10)

g(P) = min
Θ

(

∑

i

ρ

(

min
c∈convex hull(l

Pi

i
)

‖mi(Θ)− c‖

)

+ r(scale(Θ))
)

(11)

r(σ) = − log(
σ − τ

τ
) +

σ − τ

τ
. (12)

The regularization assigns infinite cost to scales smaller

than τ and increases slowly for larger scales. We are using a

weak projective model, that is our point model is a function

mi(Θ = (q, t)) = Rqvi + t (13)

Rq=(a,b,c,d) =
[

a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)
2(ad+ bc) a2 − b2 + c2 − d2 2(cd− ab)

]

.

Here R is a matrix which describes a 3D rotation, projec-

tion onto the first two dimensions and scaling and vi are the

vertices of a 3D shape. The matrix is described in terms of

an unnormalized quaternion q [11]. The scale is therefore

just ‖q‖
2
, making it easy to differentiate and minimize the

above equations.



Figure 4. The landmarks used in the experiment on one of the train-

ing images and the corresponding vertices of the 3D shape that is

fit to the image to select the correct landmark candidates.

6. Multiple Faces per Image

When detecting more than one image per face, it is pos-

sible to exploit the information from the search for the first

face when searching for the second face. In this case, we

return the first face found, and remove the candidate posi-

tions belonging to this face from all candidates in the queue.

This keeps the lower bound constraint, because the minimal

residual increases, when removing candidate positions. The

search is then continued on the pre-filled queue, and rapidly

finds the second face.

When searching only for a single face but at an unknown

scale, then it is fastest to initialize the queue with one se-

lection per scale, choosing all detections at that scale. The

branch and bound algorithm will then stop when the face

with the smallest cost at any scale has been found, without

the need to continue the search at the other scales.

7. Candidate Detector

Even though the detector is not the topic of this article, a

landmark detector is nonetheless neccessary to evaluate our

algorithm in practice. No pretrained detector for the large

amount of landmarks used in our experiments was available,

we therefore describe in the following section the landmark

detector used in our experiments. It is possible to replace

this detector with any other detector in an application. We

trained a detector for 23 landmarks, as shown in Figure 4.

The 3D shape corresponding to these landmarks was read

from the mean of the BFM 3D Model [19]. The landmark

detector consists of two phases, in the first phase we use a

decision forest [4] to classify image patches of size 5 × 5
into interestpoint or not interestpoint. This was used to ex-

tract only 1-3% of the image pixels as potential candidates

for landmark positions. At these interestpoints we extracted

64 features by projecting patches of size 33 × 33 onto the

first 64 eigenvectors of the covariance of all patches around

interestpoints in the training data. This basis is shown in

Figure 5. Some of the example patches used to train the landmark

detector. Each column shows 15 randomly selected samples for

one of the landmark classes, the first column contains background

samples. This figure is best viewed in the digital copy.

Figure 6. Linear Basis used to extract features for the classifica-

tion. The basis was learned from example patches and contains

explicit steerable color edge detectors at multiple scales.

Figure 6. This reduced set of 64 features per patch was then

classified with the help of another decision forest, and up

to sixteen detections per image and landmark were kept as

candidates, if the detection confidence was above a fixed

threshold. The decision functions in the nodes of the for-

est are linear functions of the full dimensional space. The

decision functions were learned by randomly drawing two

samples from different classes, and taking the direction be-

tween these samples as the normal of the decision function,

and the midpoint as its position. Twenty directions per node

were tried, and the one which most decreased the entropy in

the resulting classes was chosen.

8. Experiments

We present two types of experiments. First, on synthetic

data we analyze the break-down points of our algorithm,

without dependence on a good object detector. In a sec-

ond experiment we show experimental results on a number

of difficult images from the color feret database [20, 21].

These results depend on the candidate point detector, and

will improve when a better tuned detector is used, but they

are included to show that even with a suboptimal detector a

useful system can be built with our method.

8.1. Synthetic data

To analyze the performance of the algorithm indepen-

dently from the performance of the candidate point detector,
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Figure 7. Our algorithm seems to scale only linearly in the number

of false positives per landmark. We produced for a dense sampling

of rotations adn scalings noise-free synthetic data with a uniformly

distributed background set of false detections. The graph shows

linear runtime behaviour, a typical example with 23 landmarks and

9 false positives per landmark is plotted in the inset.

we performed experiments on synthetic datasets.

As a first experiment, we generated landmark coordi-

nates from the model, which were perturbed with Gaussian

noise of increasing levels, and added false detections at uni-

formly randomly distributed positions in the image. In this

setting, we can evaluate (1) the effect on runtime of adding

more candidates, (2) the point were a displacement from our

rigid model is so large, that the optimum configuration no

longer is the right choice, and (3) how many of the correct

landmarks can be completely removed before the algorithm

breaks down.

Number of false positives The runtime of our algorithm

grows approximately linear in the number of added false

positives. This is demonstrated in Figure 7, where we have

also shown an example of a synthetic problem as described

in the previous paragraph. IN this experiment all landmarks

were available (no false negatives), and zero noise was used.

Amount of noise on the landmarks Next, we evaluated

the effect of adding noise to the landmarks, for a fixed num-

ber of false positives. We found, that the distance between

detections of the same class needs to be larger than the max-

imal noise on the landmarks, as otherwise the splitted sub-

problems have nearly identical costs and need to be enumer-

ated completely, leading to a large number of evaluations.

For real world data we achieve this by non-maximum sup-

pression within regions of the size of the expected noise,

and for synthetic data we create suitable datasets, were the

minimum distance is 1.5 times the maximum noise. In

this experiment all landmarks were observed, and Gaussian

noise cut off at 2σ was added to the landmarks. We ob-

served that the runtime does not depend on the amount of

Runtime as a function of detection accuracy
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Figure 8. Our algorithm behaves well in the presence of noise. It

only starts to require many iterations, once the amount of noise

is larger than the distance between the landarks in the face. The

graph shows the amount of noise (in std-deviations of the maxi-

mum face diameter) against runtime, and in the inset a typical ex-

ample for a very situation with noise-level 6, where the lines show

the displacement of the true landmarks to the noisy landmarks.

Runtime and success-rate for missing data

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9

10
11
12

Missing detections (out of 20)

R
u

n
ti

m
e 

(s
)

 

 
Measurements (s)

Average runtime (s)

0
10
20
30
40
50
60
70
80
90
100

S
u

cc
es

s 
R

at
e 

(%
)

Figure 9. Missing detections are handled by the robust distance

function. We observe, that the minimum of our cost function is at

the expected position for up to 20% completely missed detections.

We randomly selected 18 out of the 23 landmarks, and varied the

amount of landmarks which had no correct detections but only

false positives in their candidate set. The search was cut off, when

the cost was above a threshold. The success rate (number of times

that the returned globally minimal solution was the one we wanted

to find) is shown in blue, and the runtime in black.

noise, until the deviations are larger than the distance be-

tween the landmarks. At this point we observed a rapid

increase in the number of iterations necessary, and also an

increase in the variability of the runtime. This highlights

the necessity to choose the detected landmarks such that

they can be located with higher accuracy than the distance to

their neighbours, which also makes intuitive sense, because

otherwise we can no longer distinguish the landmarks. The

results are graphed in Figure 8, observe the sharp increase

at σ = 8% of the maximum face diameter.

Missed Detections In practice, missing detections will

occur. Our strategy to handle this is to detect a large num-

ber of landmarks (23) and to include only the 18 land-
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Figure 10. Some randomly chosen images from the color feret database for each pose, and the detected landmark positions. The first two

rows are success cases, the last row shows a failure case. This figure is best viewed in the electronic copy.

Color Feret Pose Correct detections (%)

fa Frontal 92%

fb Frontal 86%

ql Quarter left 93%

qr Quarter right 94%

rc Random (10 deg) 91%

hl Half left 69%

hr Half right 72%

Figure 11. Success rate on the color feret dataset. Note that our

algorithm always picks the globally optimal candidate set, but the

detector used in our experiments performed suboptimally. We ex-

pect these rates to increase, once more attention can be devoted to

the detector. Note that the half-left and half-right datasets contain

also a number of profile views, for which we do not have a suitable

detector.

marks wich contain the strongest response. This typically

increases the number of correct detections, without loosing

expressivity. Also, we use a relatively low threshold, de-

tecting many candidates, such that the candidates are likely

to contain the true landmark. But also with this strategy

there will be a certain amount of completely undetected

landmarks, which we handle by using the Huber distance

measure in Equation 4. In Figure 9 we graph the effect of

missing detections in a synthetic experiment. We observe

that the cost no longer has its minimum at the correct se-

lection, once more than 20% of the points are completely

missing. And searching for the optimum becomes expen-

sive, because many solutions have a similar cost. We miti-

gate this by setting an upper limit on the acceptable distance

for a match to be a face, once the current lower bound raises

above this level, we report that no face has been found.

8.2. Real world data

We detected landmarks in the non-profile poses of the

color feret database. Our detector was not trained for pro-

file views, so we did not test these subsets. We tested 100

randomly chosen images out of each class. A detection

was labelled as correct, when the predicted positions of all

23 landmarks were approximately correct, as judged by an

experimenter. Some example detections and failures are

shown in Figure 10, and the detection rates are tabulated

in Figure 11 for the different experiments. We searched

at multiple scales and kept the detection with the smallest

residual. The runtime in these experiments was dominated

by the detector. Generally, the most problematic images

were those, were the ears were invisible or not detected.

The inner face landmarks were detected correctly in most

cases, but the algorithm can be trapped into the wrong pose,

if the two landmarks at the ears have not been detected. This

accounts for the majority of failed detections.

9. Conclusion

We presented a novel algorithm to find the globally best

set of detections out of a number of candidate detections

with the help of a shape model. The algorithm is applica-

ble to a large number of shape models. As it is globally



optimal we hope that it will supersede the use of stochastic

algorithms such as RANSAC for this type of problem. The

algorithm can be added as an additional step to existing sys-

tems to improve their performance and robustness. To stim-

ulate the use of this algorithm we publish efficient source

code with a matlab and c++ interface, and a pretrained de-

tector for 23 facial landmarks.1
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Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,

G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years of

Integer Programming 1958-2008, chapter 5, pages 105–132.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[16] K. Lekadir and G.-Z. Yang. Optimal feature point selection

and automatic initialization in active shape model search.

In D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, edi-

tors, MICCAI 2008, volume 5241 of LNCS, pages 434–441.

Springer, 2008.

[17] I. Matthews and S. Baker. Active Appearance Models Revis-

ited. IJCV, 60(2):135–164, Nov. 2004.

[18] C. Olsson, F. Kahl, and M. Oskarsson. Optimal Estimation

of Perspective Camera Pose. In ICPR’06, pages 5–8, 2006.

[19] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vet-

ter. A 3d face model for pose and illumination invariant face

recognition. In AVSS, Genova, Italy, 2009. IEEE.

[20] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The FERET

Evaluation Methodology for Face Recognition Algorithms.

PAMI, 22:1090–1104, 2000.

[21] P. Phillips, H. Wechsler, J. Huang, and P. Rauss. The FERET

database and evaluation procedure for face recognition algo-

rithms. Image and Vision Computing, 16(5):295–306, 1998.

[22] S. Romdhani, J. Ho, T. Vetter, and D. J. Kriegman. Face

recognition using 3-D models: Pose and illumination. Pro-

ceedings of the IEEE, 94(11):1977–1999, 2006.

[23] S. Romdhani. and T. Vetter. Estimating 3D shape and texture

using pixel intensity, edges, specular highlights, texture con-

straints and a prior. In CVPR’05, volume 2, pages 986–993

vol. 2, 2005.

[24] S. Romdhani and T. Vetter. 3D Probabilistic Feature Point

Model for Object Detection and Recognition. In CVPR’07,

pages 1–8, 2007.

[25] N. Stoiber, R. Seguier, and G. Breton. Facial animation re-

targeting and control based on a human appearance space.

Computer Animation and Virtual Worlds, 21(1):39–54, 2010.

[26] P. Viola and M. Jones. Robust real-time object detection. In

International Journal of Computer Vision, 2001.

[27] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer
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