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We introduce a robust multi-object tracking for abstract multi-dimensional feature vectors. The Condensation
and the Wavelet Approximated Reduced Vector Machine (W-RVM) approach are joined to spend only as
much as necessary effort for easy to discriminate regions (Condensation) and measurement locations
(W-RVM) of the feature space, but most for regions and locations with high statistical likelihood to contain
the object of interest. The new 3D Cascaded Condensation Tracking (CCT) yields more than 10 times faster
tracking than state-of-art detection methods. We demonstrate HCI applications by high resolution face
tracking within a large camera scene with an active dual camera system.
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1. Introduction

Image-based detection tasks are time consuming. For instance,
detecting a specific object in an image, such as a face, is computa-
tionally expensive, as all pixels of the image are potential object
centers. Hence, all pixels must be classified, for all possible object
sizes. The fastest state-of-art classifiers, for example the AdaBoost
based classifier of Viola and Jones [1] or the Wavelet Reduced Vector
Machine introduced by Rätsch et al. [2], are applied to detection
algorithms near real-time. Detection uses a sliding observation
window strategy. The brute-force search cuts out patches and
classifies them for each pixel location of the entered image. To detect
objects of different size (i.e. objects at different distances to the
camera) an image pyramid is used by down-sampling the image
several times till the object has the size of the observation window.
However, for video streams with high-resolution cameras, covering a
large range of distances between the camera and the object, or/and if
we want to detect different object classes at the same time (e.g. facial
features like eyes, nose tip, and mouth corners) the sliding
observation window strategy quickly becomes intractable.

It is obvious that the object's position and size vary only slightly
from one video frame to the next. Therefore, it is possible to use
information from the last time steps to speed up the search in the next
frame. The process of seeking and following objects is called tracking. A
method that is capable of using information of the previous iterations is
the Condensation algorithm and was proposed by Isard and Blake [3,4].
Condensation is able to track objects in a highly cluttered background.
The tracking method is a good alternative to the Kalman Filter [5],
because Condensation can estimate the unknown a posteriori proba-
bility function and does not need the assumption of a Gaussian
distribution. Therefore, the estimated density function is multi-modal
(i.e. it can have several maxima). The system and measurement
dynamics can be nonlinear and they are suited for parallelization. The
original Condensation approach by Isard and Blake is introduced to
track contours of objects. We adapted the approach for tracking objects
using a template based classifier.

In this paper we propose to combine Condensation tracking with
the efficient Wavelet Reduced Vector Machine (W-RVM) [2,6,7]. The
W-RVM uses a Double Cascade for early rejections of easy to
discriminate image locations. The classifier gains a more than 500
fold speedup compared to an original Support Vector Machine [8].
The classifier trains much faster as the Viola and Jones classifier [1] by
same detection accuracy and run-time performance and detects
about 25 times faster than the Rowley–Baluja–Kanade detector [9]
and about 1e3 times faster than the Schneiderman–Kanade [10]
detector.

The novel Cascaded Condensation Tracking (CCT) unifies the core
ideas of the Condensation and W-RVM approach to spend less
computational effort for easy to discriminate feature space locations.
Instead measuring each pixel of the frame Condensation contracts
particles at areas with higher interest. Additionally, the W-RVM
spends at each of these feature space locations of the particles only as
cascaded image sensing, Comput. Stand. Interfaces
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much as necessary effort by adapting the coarse-to-fine Double
Cascade to the tracking approach and refining the measurement step
of the Condensation approach.

The drawback of multi-modal Condensation is that it cannot track
stably multiple objects over a longer time period. Kang et al. [11]
changed the Condensation algorithm to be usable with multiple
objects of the same class, e.g. faces. The main idea is to build multiple
trackers which are in concurrence and hold only their main area. By
Kang's approach for every object a tracker instance (with an own set
of particles) is needed. So the number of trackers depends on the
number of objects detected. In difference, our approach will take
advantage of the multi-modal density function of Condensation. We
will use one tracker with a single set of multi-modal particles which
handles the different objects of the same class. As novelty we also
introduce a minimal density constraint for robust multi-object
tracking.

A limitation of tracking approaches is also that they are limited to
track only the in-plane translations of objects (x- and y-coordinates)
and cannot be used for other feature vectors or higher dimensions,
e.g., the object distance to the camera as a third tracking dimension.
Bretzner et al. [12] propose a specialized multi-scale tracking like for
features different in size or Yang et al. [13] and Huang et al. [14] use
specific deformable templates. In contrast, we want to introduce a
novel abstract multi-dimensional feature vector tracking, able to
distribute the density function of the particles over higher dimen-
sional abstract feature vectors. For example our approach will be
applied for the three-dimensional Condensation tracking of the x-, y-,
and z-coordinates of objects, where the z-dimension is the distance of
the object to the camera as in [15]. Our approach will be open for
tracking abstract feature vectors and with more than three dimen-
sions, e.g. the orientation of the objects or even abstract object or
model parameters.

If faces and other facial features (e.g. eyes) can be tracked stably, in
real-time, and over larger distances Human Computer Interactions
become much more natural because the interaction area is larger and
more convenient. Current systems mostly track faces only over low
distances, e.g. sitting in front of a camera. Moreover, for most facial
applications only high resolution images are suitable. For example, to
apply the 3D Morphable Face Model (3DMM, [16]) for face or facial
emotion recognition, we want to use a dual camera system with a
static and a Pan-Tilt-Zoom (PTZ or active) camera which can be
rotated and optically zoomed. Prince et al. [17] propose a dual camera
system to deliver high resolution images. In the static image the
detection is based on background subtraction and the skin/back-
ground-color of the body. They direct the active camera on a face and
apply a face recognition system on the image section. In difference to
them, we will detect and track faces alternatively on the static or
active camera for most robust tracking as in [15]. By Yang et al. [13] an
approach with an active camera was realized. They do a detection
based on color combined with an online learning. To detect new faces
beside the online learning model a face detector is used. It is not
clearly stated if the detector is only based on color information. Our
approach will use a powerful classifier based on the double cascaded
W-RVM, using a Support Vector Machine as final validation stage,
known for best generalization performance [8]. It is not detailed if
Yang et al. use zoom facilities in case an object is detected. So their
system seems not able to provide high resolution images of faces at
larger distances.

This paper presents the coherent and complete frame work of our
CCT approachwherewe summarize and extend the conference papers
[18], [19]. The main contribution is the unification of the Condensa-
tion tracking by Isard and Blake and the double cascaded W-RVM
classifier by Rätsch et al. The obtained novel Cascaded Condensation
Tracking (CCT) joins the core idea of both approaches to spend less
computational effort for easy to discriminate image regions (Conden-
sation) and vectors (W-RVM) of the feature space, but most for
Please cite this article as: M. Rätsch, et al., Efficient object tracking by c
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locations with high statistical likelihood to contain the object of
interest. In this paper we will introduce the CCT based on the
following core ideas:

• Adaptation of the W-RVM classifier for tracking and providing a
probabilistic output (Section 2).

• Condensation for abstract multi-dimensional feature vectors usable
for template based tracking instead tracking of object curves.
Distribution of the density function and tracking objects over the
three dimensions of the camera scene (Section 3).

• Extension of Condensation by a dynamic and adaptive stochastic
prediction of the object dynamics (dynamic and adaptive diffusion
matrix, Section 3.1).

• Stable multi-object tracking (Section 3.2) by:
– Adaptive multi-modal probability distribution,
– Weighted drift function, and
– Minimal density constraint.

We apply the CCT on an active dual camera system with a still and
PTZ camera providing high resolution image sections for Human
Computer Interaction (HCI) applications within large camera scenes.
In Section 4 we also compare the robustness and run-time
performance with state-of-art face detection and tracking approaches.

2. Probabilistic Wavelet Approximated Reduced Vector Machine

We will now roughly introduce the core ideas of the Wavelet
Approximated Reduced Vector Machine (W-RVM) and how to obtain
a probabilistic measurement output. The W-RVM classifier is a two
stage approximation of a Support Vector Machine (SVM). Suppose
that we have a labeled training set consisting of a series of e.g. 20×20
image patches xi∈χ (arranged in a 400 dimensional vector) along
with their class labels yi∈ {±1}. Support Vector classifier implicitly
maps the data xi into a dot product space F via a (usually nonlinear)
map Φ :χ→F, x↦Φ(x). Although F can be high dimensional, it is
usually not necessary to explicitly work in that space [8]. By Mercer's
theorem, it is shown that there exists a class of kernels k x; x′ð Þ to
compute the dot products in associated feature spaces, i.e.
k x;x′ð Þ = Φ xð Þ;Φ x′ð Þ. The training of a SVM provides a classifier
with the largest margin [8], i.e. with the best generalization
performances for given training data and a given kernel.

The following core ideas of the W-RVM provide an optimal
approximation of the decision hyper-plane for an efficient and
accurate classifier (for more details, we refer the reader to [2,6,7].):

1. Support VectorMachine: use of a SVM [8] classifier that is known to
have optimal generalization capabilities.
(a) SVM: Ψ

SVM
=∑ i=1

Nx αiΦ(xi), xi are the Support Set Vectors
(SSVs)

(b) Decision function: y(x)=sgn(∑ i=1
Nx αik(x,xi)+b) with the

kernel function k(⋅, ⋅), e.g. Gaussian kernel k(x,xi)=exp(− ||
x−xi||2/(2σ2)).

2. Reduced Support Vector Machine: the SVM is reduced by a set of
Reduced Set Vectors (RSVs, zi) [20]. Fig. 1 shows on a 2D toy
example that with only 9 RSVs instead of 31 SSVs (Nz≪Nx) the
same decision accuracy can be obtained.
(a) RVM: Ψ

RVM
=∑ i=1

Nz βiΦ(zi).
(b) Decision function: y(x)=sgn(∑ i=1

Nz βik(x,zi)+bNz
).

3. Double Cascade: the RVM is reduced in a second step by
approximating each RSV by several levels of Wavelet Approximat-
ed Reduced Set Vectors (W-RSVs) to obtain a Double Cascade. For
non-symmetric data (i.e. only few positives to many negatives) an
early rejection of easy to discriminate vectors is achieved. It is
obtained by the two following cascaded evaluations over coarse-
to-fine W-RSVs:

(a) Cascade over the number of used W-RSVs: using only the first
reduced vectors yields high error rates (Fig. 1), but data points
ondentional and cascaded image sensing, Comput. Stand. Interfaces
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Fig. 1. Cascaded application of RSVs (stars) to a 2D classification problem (black and white dots), showing (left to right) the original SVM and the result of using 1, 2, and 9 Reduced Set
Vectors.
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(with a large negative distance to the classification boundary)
can be early rejected as negative points, without further
evaluation cost.

(b) Cascade over the resolution levels of each W-RSV: already
using the first approximation stages of the 2nd cascade (e.g.,
Fig. 2, left to right), first image locations, like homogenous
background, can be rejected. Only for more difficult image
locations the full complexity of the W-RSVs must be used.
The Double Cascade constitutes one of the major advantages
of the W-RVM approach. The trade-off between accuracy and
speed is very continuous.

4. Integral Images: as the W-RSVs are approximated using a Haar
wavelet transform, the Integral Image method is used for their
evaluation [6].

5. Wavelet Frame: an over-complete wavelet system is used to find
the best representation of theW-RSVs. The learning stage of theW-
RVM is fast, automatic, and does not require the manual selection
of ad-hoc parameters. For example, the training time is about two
hours [7], instead in the order of weeks like the Viola and Jones
classifier [1]. The Over-Complete Wavelet Transform is applied at
the W-RVM training. That is opposite to several other approaches
using a wavelet input space transformation as a pre-processing at
detection time.

W-RVM classifiers support binary decision output and a certainty
which is related to the distance to the decision hyper-plane. A large
distance indicates a higher classification certainty. However, for the
Condensation approach probabilistic outputs of the measurement
function are needed. We tested for the estimation of the PDF (class-
conditional probability) histogram, parzen-window, and k-NN meth-
ods, all were not stable enough. Best results we obtained were by
fitting a sigmoid function for the posterior probability.

The sigmoid function fitting is a model-trust algorithm, based on
the Levenberg–Marquardt algorithm [21]. The method extracts
probabilities from SVM outputs, which is useful for classification
post-processing. The method adds a trainable post-processing step
Fig. 2. Example of coarse-to-fine W-RSVs for the first RSV (left). W-RSVs at different reso

Please cite this article as: M. Rätsch, et al., Efficient object tracking by c
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which is trained with regularized binomial maximum likelihood. A
two parameter sigmoid is chosen as the post-processing, since it
matches the posterior that is empirically observed.

pffp xffp jvffp
� �

=
1

1 + exp c1vffp + c2
� � ð1Þ

The sigmoid fitting trains iterative the parameters c1 and c2 of the
sigmoid function tomap theW-RVMoutput vffp of the feature point ffp
(e.g. faces or eyes) into probabilities pffp(xffp|vffp).

3. 3D Cascaded Condensation Tracking for Multiple Objects

3.1. 3D Cascaded Condensation Tracking

Condensation, invented by Isard and Blake [3,4], stands for
‘Conditional Density Propagation’ and is one of the most successfully
used approaches evaluated for different tracking tasks. The main
principle of the algorithm is to propagate a density function from one
iteration to the next. To this end it uses factored sampling inwhich the
probability distribution of possible interpretations is represented by a
randomly generated set. This is called a particle filter, also known as
Sequential Monte Carlo methods. The result is highly robust tracking
of agile motion. Despite the use of stochastic methods, the algorithm
runs in real-time.

3.1.1. Notations
The state of the modeled object at time t is denoted as x(t). The

history of the modeled object at time t is denoted X(t)={x(1),…,x(t)}.
This represents the model feature vector. The state of the observation
at time t is denoted z(t), its history Z(t)={z(1),…,z(t)}. Further, there is
a set of samples {s1(t− 1),…, sn(t− 1)} and a set of probabilities
{π1(t− 1),…,πn(t− 1)}. Samples are elements of the model feature
space which also contain x(t).
lution levels (bottom row) and the related wavelet approximated residuals (above).

ondentional and cascaded image sensing, Comput. Stand. Interfaces
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3.1.2. 3D object tracking
Instead of tracking object curves, the proposed CCT is utilized for

template based tracking and can be used for abstract multi-
dimensional feature vectors. Therefore, the feature vectors x(t) and
the observation z(t) can have any dimensions.

In this paper we introduce a tracking of objects within the three-
dimensional camera scene. In opposite to other tracking approaches
(e.g. [13,14]) we distribute the samples and track objects not only
over the x- and y-coordinates of the image plane, but also over the
z-dimension, which is the distance of the camera to image plane (see
Fig. 3). Hence, the feature vector x(t) is three-dimensional
x tð Þ; s tð Þ

i ∈R3
� �

. Similar to conventional object detection approaches
[9], an image pyramid of the frame is used in order to locate objects of
different sizes and the distance to the camera is represented by the
scale of the image pyramid. The observation z(t) represents the image
features from a section of a video frame (e.g. a 20×20 gray value
patch, z tð Þ∈R400) modeled by the center point x(t).

3.1.3. Assumptions
The detection of the likelihood of the object's position within the

model p(x(t)|z(t)), given the image signal information at time step t, is
not trivial. Therefore, the Bayesian theorem is applied to simplify
computation:

p x tð Þ jz tð Þ� �
=

p z tð Þ jx tð Þ� �
p x tð Þ� �

p z tð Þ� � = kp z tð Þ jx tð Þ� �
p x tð Þ� �

ð2Þ

The quotient 1/p(z(t)) is independent of x(t) and can be expressed
by a constant term k. Evaluation of p(z(t)|x(t)) instead of p(x(t)|z(t)) is
one of the central concepts of the Condensation approach. It tries to
estimate the probability density function for areas of the image with
high a-priori likelihood. The prior obtained from the last frame is used
Fig. 3. CCT enables tracking of multiple hypotheses in three dimensions (chain dotted
lines indicate the end positions). Red samples belong to the 1st, pink to the 2nd and blue
to the last frame (top row, left to right). The green line indicates the track of the left
person from left to right and then to the front. The sizes of the samples indicate the
weight per sample. The experiment demonstrates the dynamic probability distribution
over three dimensions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Please cite this article as: M. Rätsch, et al., Efficient object tracking by c
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to control the density of the samples over the model space. At the
sampled feature points of the model the likelihood is measured anew.

Furthermore, we assume for this problem that all observations
during the process are independent from each other. This means that:

p Z tð Þ jX tð Þ� �
= ∏

t

i=1
p z ið Þ jx ið Þ� �

ð3Þ

The second assumption states that the process is a Markov chain,
i.e. observations are independent of earlier states:

p x tð Þ jX t−1ð Þ� �
= p x tð Þ jx t−1ð Þ� �

ð4Þ

This expresses that observations are only dependent on the last
state.

3.1.4. Initialization
For initialization the samples are distributed in the image feature

space, which means scattering them over the frame and, because we
aspire a three-dimensional object tracking and density function,
additional over the scales of the image pyramid. This can be done e.g.
randomly or aligned in a grid. For this experiment, we decided to
scatter the samples according to a two-dimensional normal distribu-
tion in the x, y-plane and uniformly in the scales. All samples are
assigned with the same probability of 1/n.

3.1.5. Selection
Factored sampling is utilized in this step to select the samples that

are used for one iteration loop. The probabilities of the samples sum
up to one. We can assign a subinterval to every sample in [0,1] such
that the length of the interval is equal to the probability. We now
generate a random number r between zero and one and select the
sample in whose subinterval the number is situated. Let's say the
random number is within the j'th subinterval (Fig. 4). We therefore
choose the sample sj(t−1) and set s tð Þ

i = s t−1ð Þ
j . This is repeated until all

n samples are chosen.

3.1.6. Dynamic adaptive prediction
In this step, we want to predict the new position of the samples.

Prediction means sampling from p x tð Þ jx t−1ð Þ = s
tð Þ
i

� �
to choose each

si(t). It is attempted to predict the object's position x(t) given that the
model of the last step was at position s

tð Þ
i . If the dynamics are modeled

as a linear stochastic process, we can compute new samples in the
following way:

s tð Þ
i = As tð Þ

i + Bw tð Þ
i ð5Þ

A deterministic and a stochastic component is used, where A is a
translation matrix (drift due to the deterministic component of object
dynamics), B a diffusion matrix and w(t) a vector of standard normal
variates (random component of object dynamics). Matrix A accounts
for the movement of the samples and is detailed in Section 3.2. The
matrix B can be learned a-priori and used constantly [3,4,22].

One goal of the proposed work was to find and compare
alternatives to control the diffusion matrix B. We realized a constant
diffusion matrix, a dynamic diffusion matrix, and a dynamic and
Fig. 4. Selection of a sample.

ondentional and cascaded image sensing, Comput. Stand. Interfaces
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Fig. 5. The computational complexity is twice contracted to regions with high
probability to contain objects of interest. For difficult to discriminate feature space
regions (pink) more operations per measurement location (W-RVM) and a higher
sample density (Condensation) are used, than for homogenous areas (white). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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adaptive approach. A dynamic diffusion matrix can be computed for
each frame from the covariance matrix, i.e. with B=1/(n−1)DDT,
whereD is the mean-free data matrix constructed from the n samples.
As noveltywe introduce a dynamic and adaptive approach to compute
the diffusion, namely

s tð Þ
i = As tð Þ

i + C 1−π tð Þ
i

� �
Bw tð Þ

i ð6Þ

where C is a constant that represents the scatter. The approach is
adaptive because it diffuses samples with low weight more than
samples with highweight and is dynamic because the diffusion is new
adapted at each time step t. This extension increases the localization
accuracy of the tracked object (because on samples s

tð Þ
i with higher

weight πi(t) less noise is added) by no additional computational effort.
A smaller density is needed for background image areas, because on
samples s

tð Þ
i with smaller weight πi(t) more noise is added. Entering

objects into the camera scene or lost objects are faster detected by
fewer samples at these feature space areas.

The dynamic adaptive diffusion matrix enables a higher accuracy
of the tracking locations by no increase of complexity. The scatter
parameter C controls the trade-off between the robustness of the
tracking on one hand and a complexity reduction and an increase of
the localization accuracy on the other hand. Moreover, the multi-
modality of the density function can be controlled by the dynamic
adaptive diffusion. However, for a stable multi-object tracking over a
longer time period more extensions are necessary and introduced in
Section 3.2.

3.1.7. Measurement
In this step, the samples are measured and their probabilities are

updated. Now that the samples are placed in the area where the
object is presumed to be, they are measured in terms of z(t): πi(t)=p
(z(t)|x(t)=si(t)) whichmeans that we assign to πi(t) the likelihood that
the object is observed in the image at the position x(t) of the model,
represented by the drifted and diffused feature vector si(t). Conden-
sation uses statistics to distribute the samples si(t), i=1,…,n by a
conditional probabilistic density function over the feature model
space (e.g. an image pyramid) and measures only at this certain
pixels of the image if an object of interest is located at these image
positions. Instead of all pixels, used for object detection, a much
lower number n of measurements is needed. This provides a
significant speedup. The W-RVM approach joins the same concept
only to spend as many operations as necessary to easy to
discriminate model space regions, but most for locations where
objects of interest are predicted by statistical assumptions. As
novelty we combine both approaches for a reduction of computa-
tional complexity by refining the measurement function. Instead
using a constant number of operations, as used in former
Condensations methods, we adapted and integrated the W-RVM as
measurement function. The W-RVM uses a Double Cascade and
other methods to contract computational complexity only to vectors
with higher statistical interest as summarized in Section 2.

The proposed Cascaded Condensation Tracking yields an optimal
contraction of computational complexity per region (based on
Condensation) and per vector (based on W-RVM) of the feature
space. This twice stochastically contracted complexity per region
(symbolized by Voronoi-diagram areas) is demonstrated on an
example image in Fig. 5 where for difficult to discriminate feature
space regions (pink) more operations per vector (W-RVM) and a
higher sample density (Condensation) are used, than for homogenous
background (white). The complexity per region is colorized as number
of operations (used by W-RVM) per sample and dived by the size of
the Voronoi area (symbolizing the density function obtained by
Condensation).
Please cite this article as: M. Rätsch, et al., Efficient object tracking by c
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3.1.8. Object position
The position of the object can be estimated using the following

formula for the expectation (the object location estimation is detailed
for multi-objects in Section 3.2):

E x tð Þh i
= ∑

n

i=1
π tð Þ
i s tð Þ

i ð7Þ

The CCT performs one loop per time step (frame) consisting of
selection, prediction and measurement. Samples are selected, then
drifted and diffused. Finally, the new weights are measured, the next
iteration can start.

3.2. Tracking of multiple objects

An approach able to track multiple instances of the same class of
objects (e.g. faces) is substantial for many applications. A drawback of
the original Condensation algorithm is that a multi-object tracking is
not stable over longer time periods, although it provides a multi-
modal density function and probability distribution (function with
more than one maximum) as opposite to the Kalman Filter [5]. For the
maxima at the density function we use the same clustering approach
as in [7], but here by assigning samples to clusters with respect to
their weight and their Euclidian distance to the cluster centers. The
object positions (cluster centers c) are estimated by (7) over the
assigned samples to each cluster.

In the original Condensation algorithm the cluster with a higher
probability to be an object of interest draws off samples from
improbably clusters (see Fig. 7, top). The not as probably cluster is not
tracked anymore or a swinging between the objects can result. Only if
two clusters would have the exact identical response (which is not the
case because of the influence of random values) both would be stably
tracked. We propose a novel approach, inspired by Kang [11], but
there are multiple instances of the tracking method (each with an
own set of particles) used and the advantage of Condensation to
provide a multi-modal density function is not exploited.

The novel adaptive multi-modal probability distribution uses one
multi-modal distributed set of samples but adapt the probability
distribution individual for every cluster. The original probability
distribution is manipulated to suppress samples of other clusters
(Fig. 7, bottom shows stable multi-object tracking). No expensive
computations are needed. From the probability distribution vector a
manipulated probability distribution matrix with size n×m is
ondentional and cascaded image sensing, Comput. Stand. Interfaces
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calculated where n is the number of samples and m the number of
clusters. The manipulated likelihoods πi, j:

πi;j = πi ∏
m−1

k=0;k≠j
1− 1

exp
di;k
p

� �q� �
0
BBB@

1
CCCA ð8Þ

where di, k is a distance measurement and p, q are empirical constants
(we obtained good results with p=40 and q=6). The new πi, j are
normalized.

The selection process is also adapted so that n/m-times every
column of the manipulated probability distribution matrix is used.
This balances the amount of samples per cluster. A stable tracking of
multiple objects is obtained over long time periods.

The number of objects can be limited (e.g., if only one person is in
the image) to cmax clusters. To profit from this a-priori knowledge the
multi-object certainties are calculated for all found clusters and the
best cmax clusters are kept. After calculating the weighted certainties
the dispensable cluster regions (clusters not in cmax) obtain fewer
samples at the next iteration and most samples are contracted on the
expected clusters.

The drift in Blake's approach is calculated by a stochastic
differential equation for single movements [22]. For multi-object
CCT we additionally propose a weighted drift function for the
prediction of the next sample positions. This yields a robust tracking,
because themultiple objects canmove in different directions andwith
Fig. 6. Our active dual camera system (left) demonstrates robust CCT in three dimensions (
row).

Please cite this article as: M. Rätsch, et al., Efficient object tracking by c
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different speed. We obtain a weighted deterministic component of
object dynamics in (5) by defining the translation matrix A by:

A =

1 0 0 fx
0 1 0 fy
0 0 1 fz
0 0 0 1

0
BB@

1
CCA ð9Þ

For A and Eqs. (5) and (6) homogeneous coordinates are used. The
translation vector f is defined by:

f = ∑
m

i=1
1− 1

∑m
j = 1Δc

t−1ð Þ
j

s−c t−1ð Þ
i

� �0
@

1
AΔc t−1ð Þ

i ð10Þ

The cluster offsets are described by Δc tð Þ = c tð Þ−c t−1ð Þ. The
weights are evaluated by the component wise distance to the cluster
centers and normalized. The drift of a sample is continually most
influenced by the drift of the nearest cluster.

Moreover, we developed aminimal density constraint. If one object
is tracked in a video stream most particles are contracted near the
object. If a second object enters the scene it can take several frames till
it is captured by at least one sample. Therefore, we integrated a
constraint with a minimal density for each image area (defined by an
equidistant grid over the frame and scales of the image pyramid).
Within each image area additional samples are randomly distributed
until the minimal density constraint is fulfilled.
right), even for short occlusion of the object and for multiple objects (right, 5th and 6th

ondentional and cascaded image sensing, Comput. Stand. Interfaces

http://dx.doi.org/10.1016/j.csi.2011.02.001


Fig. 7. The projection onto the horizontal translation axis of the density function
demonstrates that after some iterations one cluster can dominate by taking over all
samples (top, original Condensation). Based on the novel adaptive multi-modal
probability distribution the multi-object CCT is stable (bottom).

Table 1
Comparison of run-time performance.

Approach sec per scale

Detection with SVM classifier 6.76
Detection with W-RVM 0.0135
Condensation with SVM classifier 0.329
Condensation with W-RVM (CCT) 0.00133
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4. Active dual camera system for CCT experiments and
HCI applications

We applied the new 3D CCT to an active dual camera system. The
system (Fig. 6, left image) consists of a large 30 in. monitor, a static
camera (red box: Basler A301fc, 8 mm lens), a PTZ-camera (blue: Sony
Evi D100) and two 300 W light panels. Fig. 6, right demonstrates
results of the 3D CCT. The distribution of the samples respective to the
density function of the CCT for the third dimension is shown by the
histograms in the upper left corner of each tracking image. If many
samples are distributed on larger scales of the image pyramid (face
near to the camera) the maximum of the histogram moves to the
lower (green) bars and if many samples are on the smaller scales
(further away from the camera) it moves to the upper (blue) bars
(right, 1st row). Even for larger distances the PTZ-camera delivers a
high resolution image section of the face, making face or expression
recognition HCI applications feasible (2nd and 4th row, Note that the
max. optical zoom already exceed at the 3rd frame). The active dual
camera system tracking is more robust to fast movements of the
Fig. 8. HCI application FaceSwap applying 3D CCT. FaceSwap is an enjoying eye-capture by t
CCT is demonstrated by tracking multiple persons and swapping their faces or with faces o

Please cite this article as: M. Rätsch, et al., Efficient object tracking by c
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object (CCT on the static camera, 1st row, controls the PTZ-camera,
2nd row).

However, the CCT direct on the PTZ-camera stream (PTZ-camera
controls itself, 3rd row, and the static camera, 4th row, shows only an
overview of the scene) can track larger distances and angles because
of the larger visible scene area of the PTZ-camera (The Schema at
Fig. 6, bottom left compares the scene area (red triangle) of the static
camera and the scene area (blue) of the PTZ-camera.).

To compare different approaches in the experiments we used a
video sequence of 1000 frames collectedwith the dual camera system.
On each frame the faces of two persons are visible. We compared the
novel CCT with tracking based on Kalman filters [5], with the original
Condensation [4] and with state-of-art face detection methods [1,7].

In opposite to the Kalman tracking Condensation is able to track
multiple objects. On the test set in 228 of 1000 frames both faces
where correctly detected by the original Condensation. In comparison
the CCT tracked 994 frames correctly. This experiment demonstrates
that the CCT can track multiple objects stably over long time periods.
Because of the density function on the third dimension the tracking is
also stable on different distances (Fig. 6, right, 6th row shows
examples of the test set). Compared to original Condensation, CCT
was more robust to temporary occlusion at the experiments. If objects
get lost for some frames (e.g. Fig. 6, right, 5th row), the particles
distribute faster over the frame and contract again when the object is
found back, because of dynamic adaptive diffusion matrix.

Fig. 7 shows on a subset of the test set (see example frames in
Fig. 6, right, 6th row) that the CCT can stably track two persons, taking
advantage of the adaptive multi-modal probability distribution. The
density function is projected onto the horizontal translation axis.

We also compared the run-time performance at the experiments
on a standard PC (Dual-Core, 2.3 GHz) for detection on an equidistant
grid and for the Condensation tracking (both using different number
ouching questions from the field of perception psychology. The performance of the 3D
n photographs.
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of scales, therefore the time is given per scale of the image pyramid).
As classifier either a standard SVM [8] or the W-RVM (training and
data as described in [7]) is used with comparable detection accuracy.
Table 1 shows that the contraction of the computational complexity
either per region (based on Condensation) or per location (based on
the double cascaded W-RVM) of the feature space improves the run-
time significantly. However, best performance, by no significant loss
of accuracy, is gained joining both contractions of computational
complexity over the feature space by the Cascaded Condensation
Tracking. The introduced 3D CCT yields more than 10 times faster
tracking as state-of-art detection methods.

The HCI application FaceSwap (Fig. 8) demonstrates the high run-
time performance and robustness of the 3D CCT. The face's areas are
tracked by CCT in three dimensions, cut out and swapped either
between persons on the scene or with faces on arbitrary photographs.
The demonstration of the CCT is an enjoying eye-capture at
presentations and touches questions from the field of perception
psychology, e.g., by taking over different identities. The application
was inspired by a joint project with the Academy of Art and Design,
Basel [23].

5. Conclusion

The Condensation and the Wavelet Approximated Reduced Vector
Machine approach are joined by the core idea to spend only as much
as necessary effort for easy to discriminate regions (Condensation) or
vectors (W-RVM) of the feature space, but most for locations with
high statistical likelihood to contain the object of interest. In this
paper both approaches are unified. We adapted the W-RVM classifier
to tracking (e.g., theW-RVM provides now a probabilistic output) and
refined the Condensation approach by a Double Cascade measure-
ment function. Additionally, we generalized the Condensation
approach for abstract multi-dimensional feature vectors, e.g., the
samples are distributed, based on the now three-dimensional density
function, over the x-, y- (in-plane translation) and also the z-
dimension (distance) on a camera scene. Moreover, we introduced a
robust multi-object tracking by extensions to Condensation like the
adaptive probability distribution or the minimal density constraint.
The robustness and efficiency of the 3D CCT approach is demonstrated
on an active dual camera system for experiments and HCI applications
and compared with other approaches. The introduced 3D Cascaded
Condensation Tracking for Multiple Objects yields more than 10 times
faster tracking as state-of-art detection methods. This enables more
natural HCI by tracking a much larger range of distances or tracking
different object classes (like faces, eyes, and mouth corners)
simultaneously in real-time.
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