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Abstract. Statistical shape models, and in particular morphable mod-
els, have gained widespread use in computer vision, computer graphics
and medical imaging. Researchers have started to build models of almost
any anatomical structure in the human body. While these models provide
a useful prior for many image analysis task, relatively little information
about the shape represented by the morphable model is exploited. We
propose a method for computing and visualizing the remaining flexibility,
when a part of the shape is fixed. Our method, which is based on Prob-
abilistic PCA, not only leads to an approach for reconstructing the full
shape from partial information, but also allows us to investigate and vi-
sualize the uncertainty of a reconstruction. To show the feasibility of our
approach we performed experiments on a statistical model of the human
face and the femur bone. The visualization of the remaining flexibility
allows for greater insight into the statistical properties of the shape.

1 Introduction

Morphable models, i.e. statistical shape models based on dense point-to-point
correspondence, have become a widely used tool in computer vision, computer
graphics and medical imaging. The main idea behind a morphable model is to
span a space of shapes (3D surfaces) by taking linear combinations of exam-
ple shapes [1]. A probability distribution is estimated from the example shapes,
quantifying the probability of observing each linear combination. The most com-
mon use of morphable models is to restrict the solution-space of ill posed prob-
lems by penalizing unlikely instances of the shape. Typical examples include
image segmentation [2,3,4], registration [5,6] or 2D-3D surface reconstruction
[7,8,9]. In this context, the model is used to answer the following question:

– Given a shape, how likely is it that the shape belongs to the object class
represented by the morphable model?

These applications exploit only the fact that the variability of the shape as a
whole can be represented and quantified by the morphable model.

In this paper we are trying to get a deeper understanding of the information a
morphable model represents and how one part of the model influences the rest.
The central question we are trying to answer is:

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 251–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. Flexibility of a morphable model of the human face. The colors represent the
variability (in mm) for each point. Figure (a) shows the full flexibility of the morphable
model. In (b), the most likely reconstruction of the sketch depicted in (c) is shown,
together with the remaining variability.

– Given only a part of a shape, what is the most likely completion of this shape
and how much variance remains in the model given this partial information?

We illustrate this with an example. Assume we are given a morphable model of
the human face. Let s be a random variable representing the surface, with its
distribution given by the morphable face model. Figure 1(a) shows the mean face
E[s] and the variability represented by the model (which is, loosely speaking,
the variance var(s)). Now suppose we are given a rough sketch of the eyes, nose
and mouth in form of the black lines in Figure 1(c) and wish to reconstruct
a full face from these lines. Denoting the given lines by sb, we are interested
in the distribution of the random variable s|sb. Figure 1(b) shows the most
likely reconstruction s∗ := argmaxs p(s|sb) of the full shape, as well as the
remaining variability var(s|sb). Naturally, the shape variability is much lower
than in Figure 1(a) because the sketch sb is observed. Hence, knowledge of the
distribution of s|sb not only leads to an approach for the reconstruction of a
face from the sketch, but, equally interesting, indicates how well the face is
determined by the sketch. In the remainder of the paper we show how these
quantities can be computed, under the assumption that the shapes follow a
normal distribution.

One main assumption of morphable models is that the shapes, which are
usually represented as very high dimensional vectors, lie on an embedded linear
manifold (i.e. plane) within this high dimensional shape space. This manifold
is found by performing Principal Component Analysis (PCA) of the sample
covariance matrix. Unfortunately, standard PCA does not provide a probability
model in the shape space [10]. In particular, in our “high-dimension - small
sample” case, the covariance matrix becomes singular, which leads to various
problems in statistical reasoning. In the approach presented in this paper, we
use Probabilistic PCA (PPCA) [11], which defines a proper covariance structure
in the shape space. The PPCA approach also directly implies a method for
reconstructing a full shape given only partial information by using the posterior
mean as the best reconstruction.
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Knowledge of the best reconstruction and remaining variability of a shape
is important in many application domains. We are particularly interested in
the area of reconstructive medicine, where the problem arises frequently that a
traumatised structure has to be reconstructed to fit the remaining parts. Being
able to asses the remaining flexibility in a statistically sound way is important
for the planning of reconstructive surgical interventions and the prediction of
the outcome. Further, it is of general interest to know how much the different
parts of an anatomical structure determine its variability. This knowledge can
for example give important clues for designing implants and prostheses.

Several authors have proposed very similar methods for reconstruction of a
full surface from partial information [12,13,14,15,16]. In fact, the reconstruction
method resulting from the PPCA approach encompasses the one proposed by
Blanz and Vetter [12], and Basso and Vetter [13] as a special case. A similar
model based on factor analysis, which strongly resembles our PPCA model, was
proposed by Machade et al. in [17]. However, to the best of our knowledge, the
PPCA framework for model based reconstruction and the use of the full posterior
distribution for modeling and visualizing the remaining flexibility has not been
considered before. Indeed, the only work we are aware of that explicitly tries to
model the remaining flexibility is the one by Albrecht et al. [18]. In contrast to
our work it does not admit a probabilistic interpretation and requires a separate
algorithm for shape reconstruction.

2 Background

Before we present our model, we briefly review the mathematical concepts we
will use in the remainder of the paper. In order to apply statistical methods to
shapes we need to be able to represent them as random variables. A particularly
simple approach, is to sample the shape and organize the sampled points as a
vector in Euclidean space. Such a vector is usually referred to as a shape vector.

Two types of statistical shape models are distinguished in the literature. In
the Active Shape Models [19], the shape is given as a 2D contour and is relatively
sparsely sampled. In contrast, in the Morphable Model [1], the shape is given as
a 3D surface and the sampling is dense. From a mathematical point of view,
the concepts are the same. An important difference is, however, that in the case
of the Morphable Model the dimensionality of the shape vectors is much larger
than the number of observations. It is this property that motivates our work,
and we will therefore focus only on this case in the remainder of this paper.

2.1 Shape Vectors and Registration

Let {Γi ⊂ IR3|i = 1, . . . , n} be n surfaces, given in some suitable representation.
Define an arbitrary surface, say Γ1, as a reference surface. We assume that each
surface Γi was obtained by warping the reference surface Γ1 with a smooth vector
field φi : Γ1 → IR3. That is

Γi = {x + φi(x)|x ∈ Γ1}.
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Let Γ̂1 be a suitable discretization of Γ1 of N points (e.g. Γ̂i is represented as a
triangle mesh with N vertices). Note, that the same discretization is induced by
the mapping φ for each surface Γi. We define the shape vector si ∈ IR3N as

si = (vi,1
x , vi,1

y , vi,1
z , . . . , vi,N

x , vi,N
y , vi,N

z )T ,

where the vector vi,j = (vi,j
x , vi,j

y , vi,j
z ) represents the x, y, z coordinates of the

j-th vertex of Γ̂i.
Usually we are given the surfaces Γ1, . . . , Γn rather than a reference surface

Γ1 and the corresponding vector fields {φi}n
i=2. Finding a vector field φ that

maps between a given pair of surfaces is a central problem in medical imaging
and computer vision and is referred to as the registration or correspondence
problem. Many algorithms for surface registration have been described in the
literature (see e.g. [20] for an overview).

2.2 Principal Component Analysis and Statistical Shape Models

PCA is a well known and widely used method for dimensionality reduction and
data visualization. From n data sets, represented by vectors si ∈ IRm the mean
μ = 1

n

∑n
i=1 si and covariance matrix Σ ∈ IRm×m with Σ = 1

n

∑n
i=1(si−μ)(si−

μ)T can be estimated. PCA consists of an eigenvalue decomposition or principal
component transformation of Σ:

Σ = UD2UT , (1)

where U ∈ IRm×m is the orthonormal matrix of the eigenvectors of Σ, ordered
according to the size of the corresponding eigenvalues, which make up the diag-
onal of the matrix D2 = diag(σ2

1 , . . . , σ2
m). Note that if n < m, we have σi = 0

for all i > n.
When building a PCA-based shape model, it is assumed that the training

datasets si and linear combinations thereof form a linear space of shapes that
can be modelled by a multivariate normal distribution N (μ, Σ). With the help
of a coefficient vector α, each shape can be represented as:

s = s(α) = UD α + μ. (2)

Thanks to this representation the probability density function N (μ, Σ) evaluated
at s(α) takes the form:

p(s(α)) = 1
z exp(−‖α‖2

2), (3)

where z =
√

(2π)m det(D) is a normalization factor [12].

2.3 Linear Gaussian Models

The PPCA model considered in this paper is a linear Gaussian model of the
form

y = Ax + b + ε, (4)



Probabilistic Modeling and Visualization of the Flexibility 255

where A ∈ IRm×n and b ∈ IRm are parameters, x ∼ N (μ, Λ) and ε ∼ N (0, L)
are normally distributed random variables. For this model, the predictive dis-
tribution p(y) and posterior distribution p(x|y) have a simple analytic form, as
summarized in the following theorem [21]:

Theorem 1 (Theorem for Linear Gaussian Models). Given a marginal
Gaussian distribution for x and a conditional distribution for y|x in the form

p(x) = N (μ, Λ) (5)
p(y|x) = N (Ax + b, L) (6)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (Aμ + b, L + AΛAT ) (7)

p(x|y) = N (ΣAT L−1(y − b) + Λ−1μ, Σ) (8)

where
Σ = (Λ + AT LA)−1. (9)

It is the fact that we have an analytic form of the posterior distribution that
allows us in the following to model and visualize the remaining variability.

3 Shape Modeling Using Probabilistic PCA

In this section we present our PPCA based method for modeling the shape
variability and show how it leads to a natural approach for shape reconstruction.
Further, we show how the resulting posterior distribution can be used to visualize
effectively the remaining flexibility in the model.

3.1 Mathematical Model

The mathematical model we use for shape modeling is obtained by applying
standard Probabilistic Principal Component Analysis, as proposed by Tipping
and Bishop [11], to a set of surfaces represented as shape vectors.

Let {si ∈ IR3N}n
i=1 be n shape vectors as defined in section 2.1. The main

assumption in PPCA is that the high dimensional observations can be explained
by a mapping from a low dimensional latent space plus some additional Gaussian
noise. Let α be a d-dimensional latent variable

p(α) = N (0, Id). (10)

We model the conditional distribution of observing the shape vector s as

p(s|α) = N (Wα + μ, σ2I3N ) (11)

where W ∈ IR3N×d is a linear mapping and μ ∈ IR3N a shape vector. We can
interpret this as a generative model, where the shape s is given by the mapping
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W of the latent variable α plus some additive Gaussian noise ε ∼ N (0, σI3N ).
That is

s = Wα + μ + ε. (12)

According to Theorem 1 the predictive distribution

p(s) =
∫

p(s|α)p(α) dα. (13)

is again Gaussian with mean μ and covariance matrix WWT + σ2I3N . In sum-
mary, we obtain the distribution

p(s) = N (μ, WWT + σ2I3N ). (14)

Theorem 1 also provides us with an expression for the posterior distribution:

p(α|s) = N (M−1WT σ−2(s − μ), M−1), (15)

where
M = σ−2WT W + Id.

Tipping and Bishop [11] showed that the maximum likelihood solution for the
parameters μ, W, σ2 is

μML =
1
n

n∑
i=1

si (16)

WML = Ud(D2
d − σ2Id)

1
2 (17)

σML =
1

3N − d

3N∑
i=d+1

D2
ii. (18)

Here, Ud ∈ IR3N×d and Dd ∈ IRd×d are the sub-matrices corresponding to the
d largest eigenvalues of the covariance matrix decomposition in (1). Using these
maximum likelihood estimates in the generative model (12) yields a striking
similarity with the PCA model (2), which gives the method its name. However,
in contrast to the standard PCA, PPCA provides a fully probabilistic model.
This allows for the computation of the full posterior distribution and to deal
with missing data in a principled way.

3.2 Missing Data

Assume now that a part of the model is given. Without loss of generality, the
model can be partitioned as s = (sa, sb) with sb given and sa unknown. We would
like to reconstruct the full shape s ∈ IR3N from the partial shape sb ∈ IR3Ñ .
Equation 14 can be written as

p(s) = p(sa, sb) = N (
[
μa

μb

]
,

[
WaWT

a WaWT
b

WbW
T
a WbW

T
b

]
+ σI3Ñ ). (19)
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Using the well known formula for the conditional distribution of a multivariate
normal distribution, we have

p(sa|sb) = N (μsa|sb
, Σsa|sb

) (20)

with

μsa|sb
= μa + WaWT

b (WbW
T
b + σI3Ñ )−1(sb − μb) (21)

and

Σsa|sb
= (WbW

T
b + σI3Ñ ) − WaWT

b (WbW
T
b + σI3Ñ )−1WbW

T
a ). (22)

The above equations give us a simple recipe for shape reconstruction. Unfortu-
nately, it requires the inversion of the matrix (WbW

T
b +σI), which is potentially

huge. Using the fact that the shape is determined by the latent variables, we
instead try to find an expression for p(α|sb):

p(sb|α) = N (Wbα + μb, σ
2I3Ñ ) (23)

p(α) = N (0, Id) (24)

Again, we are in the position to apply Theorem 1:

p(α|sb) = N (M−1WT
b σ−2(sb − μb), M−1), (25)

with
M = σ−2WT

b Wb + Id. (26)

In all practical cases, WT
b Wb will be small and can easily be computed. Once α

has been determined, the most likely shape s∗ is given by

s∗ = arg max
s

p(s|α) = Wα + μ. (27)

This reconstruction is sufficient for the majority of shape modeling applications.
Hence, we hardly ever need to compute the full covariance matrix Σsa|sb

. It is,
however, interesting to write down the distribution p(sa|sb) in terms of the latent
variables:

p(s|sb) = p(sa|sb) =
∫

p(sa|α, sb)p(α|sb) dα =
∫

p(sa|α)p(α|sb) dα (28)

where we used the fact that sa and sb are conditionally independent given α.
This can be interpreted as a projection of the observation onto the latent space,
followed by the reconstruction of the full shape for the given α.

3.3 Reconstruction of Partial Shapes

We show now how the results from Section 3.2 can be used to reconstruct missing
parts of any shape that can be modeled by a morphable model. In order to model
the partial shape sb as a part of a given complete morphable model, it has to be
in correspondence with the reference shape (cf. Section 2.1).
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The latent variable α|sb is distributed according to Equation (25). The most
probable reconstruction is obtained by reconstructing the full shape from the
mean according to Equation (27). In addition to providing us with the most
probable reconstruction, p(α|sb) describes the distribution for all possible recon-
structions. By considering how strongly this distribution is concentrated around
its mean, we see exactly how reliable the reconstruction with the mean is. In
effect, p(α|sb) models the remaining flexibility of the morphable model given
the fixed part sb. In the next section, we will show how this flexibility can be
explored visually.

3.4 Visualizing the Remaining Variability

We reconstruct the shapes from the latent variable α using Equation (27), i.e.
s∗ := Wα + μ. According to the standard formula the covariance matrix of s∗

under this affine transformation becomes

WM−1WT . (29)

Note that this is a simpler distribution than the p(s|sb) given in Equation (20),
as we can ignore the Gaussian noise ε of the original model (12) here.

In order to visualize the main modes of variation of this distribution, we
perform an additional PCA, i.e. an eigenvalue decomposition of the covariance
matrix WM−1WT . When we choose the maximum likelihood estimator W =
WML from Equation (17), the covariance matrix decomposes as follows:

WMLM−1WT
ML = Ud (D2

d − σ2Id)
1
2 M−1(D2

d − σ2Id)
1
2 UT

d . (30)

By computing a (d× d)-dimensional eigenvalue decomposition of the inner part

(D2
d − σ2Id)

1
2 M−1(D2

d − σ2Id)
1
2 =: ŨD̃2ŨT , (31)

we get the eigenvalue decomposition

WMLM−1WT
ML = (UdŨ) D̃2 (UdŨ)T , (32)

without having to calculate a prohibitively large (3N × 3N)-dimensional PCA.
The main modes of variation of the shapes s∗ are the eigenvectors correspond-

ing to the largest eigenvalues. They model those deformations of the shapes
causing a maximum deformation of the full shape, while keeping the given part
sb virtually fixed.

By visualizing these modes of variation, we can see how much flexibility re-
mains in the model after fixing sb and thus how well sb determines the rest of the
shape. For instance, the eigenvector v1 corresponding to the largest eigenvalue
σ2

1 is the unique deformation with unit norm that changes the full model s as
much as possible, while keeping sb fixed within the limits of the noise modeled
by ε. By visualizing μ ± 3λ1v1 we can observe 99 % of the variation along this
first mode of variation.
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The Parameter σ was introduced in Equation (11) as the variance of additive
noise assumed to be present in the model. A maximum likelihood estimator was
given in Equation (18). When reconstructing partial shapes and examining the
remaining flexibility, σ controls how strictly the given part of the model sb is
matched.

The larger σ is chosen, the more the shape is allowed to deviate from sb. Of
course this results in a larger remaining flexibility as even the parts of the shape
constrained by sb are allowed to move slightly.

The maximum likelihood estimator for σ given in Equation (18) is:

σML =
1

3N − d

3N∑
i=d+1

D2
ii.

The number of non-zero eigenvalues is usually small compared to the dimension-
ality. Therefore, the maximum likelihood solution σML becomes small or even
zero, which will lead to the covariance matrix M in equation (26) being (close
to) singular. This results in little or no remaining flexibility as well as possible
overfitting in the reconstructed shapes.

Letting σ → 0 in Equation (17) and (14), leads to W = UdDd and thus the
use of the sample covariance matrix UdD

2
dU

T
d as our covariance estimator. It is

well known in statistics that in the “small sample, large dimension” case, the
maximum likelihood estimator of the covariance matrix provides a poor estimate
of the real covariance matrix. Letting σ2 > 0 be a parameter corresponds to the
usual shrinkage approach for covariance estimation and can be shown to improve
the estimate in such cases (see e.g. Schäfer and Strimmer [22]).

In a practical setting, σ is a very sensible parameter and has the natural inter-
pretation as controlling the balance between matching accuracy and flexibility.
So instead of the very small σML, it can for instance be chosen to match the
measurement error of the capturing device.

4 Results and Medical Applications

We conducted a number of experiments using statistical models of the human
face and the femur bone. The experiments show how the model can be used to
answer typical questions that arise in clinical practice.

4.1 Experimental Setup

For the femur experiments we used a statistical model built from 50 surfaces
of normal femurs. To establish correspondence among the surfaces, we used the
non-rigid registration algorithm proposed by Albrecht et al. [5]. For the face
experiments we used the data from the Basel Face Model1, which consists of 200
registered faces, acquired with a structured light scanner. All the experiments
have been performed with the parameter σ = 10. This value has deliberately
been chosen relatively large, to make the variations clearly visible in the paper.
1 Basel face model: http://faces.cs.unibas.ch
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4.2 Results

For our first experiment we considered the case where the nose is missing in a
face and has to be reconstructed. This is a case that actually occurs in clinical
practice, for example where a large tumor has to be removed. With our method
the reconstruction can be efficiently computed, requiring only a surface scan of
the patient. Figure 4.2 shows the reconstruction results as well as the variability
represented by the first mode of variation. It can be seen that the reconstruction
closely resembles the original nose. This is an indication that the shape of the
nose is rather well constrained, given the remaining facial surface. Figure 2(f)
shows an extremely unlikely reconstruction (with probability less than 10−13).
However, even such an unlikely reconstruction still looks natural.

Our second experiment shows that a valid reconstruction is also possible
when only a small part of the face is fixed. Figure 3 shows the reconstruction
and the variation captured by the first two principal components. In Figure 3(b)
the variability that remains for each point is color coded. The variability σvi for
the point vi is defined as

σvi =
√

var (vi
x)2 + var (vi

y)2 + var (vi
z)

2
,

(a) (b) (c)

(d) (e) (f)

Fig. 2. Reconstruction of a nose: (a) shows the surface with the nose removed. (b)
shows the real face while (c) shows the reconstructed nose. In (d) and (e) we see the
±3σ of the main mode of variation. (f) shows a nose where the first 7 components are
3σ from the mean.
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(a) (b)

(c)

(d) (e) (f)

Fig. 3. Reconstruction of the face where only a sketch (a) is given. (b) shows the best
reconstruction. The colors encode the variability (in mm) at the given point. (d), (c)
show ±3σ1 in the first mode of variation. (f), (e) show ±3σ2 in the second mode of
variation.

i.e. it is the norm of the variance measured in each direction. Of course, the
reconstruction from only a sketch shows much more variability than what can
be observed in the nose example. The last experiment shows how the model
can be used to investigate how well the femur bone is determined by the joint
surfaces. This variability can be helpful in prosthesis design. Figure 4 shows the
variability in the direction of the first two principal components.
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1st principal component mean 2nd principal component

−3σ1 +3σ1 −3σ2 +3σ2

Fig. 4. When a statistical model of the human femur bone is fitted to given joint sur-
faces (grey), considerable flexibility remains, visualized here by the first two principal
components with standard deviation σ1,2. The joint surfaces are taken from the mean,
seen in the middle, colored according to the remaining variability (in mm).

4.3 Reconstruction in Practice

For all reconstruction examples that we presented in this section the surfaces
were already in correspondence with the model. In practice, establishing the
correspondence is a pivotal step that both influences the reconstruction error
and the remaining variability. As this paper’s main focus is on modeling the
remaining flexibility and not the reconstruction of missing parts, we refer the
reader to the article by Basso and Vetter [13] for a more thorough evaluation of
the actual reconstruction using an equivalent method.

5 Conclusion

We presented a method for computing and visualizing the remaining flexibil-
ity in statistical shape models, when part of the shape is known. To model the
shape variability we use a probabilistic model based on PPCA. The flexibility
remaining in the model can be computed from the posterior distribution arising
from the PPCA model. We proposed to compute the remaining flexibility by
evaluating the principal components of this posterior distribution and showing
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the effect that changing the corresponding coefficients has on the shape. We pre-
sented experiments that illustrate typical applications of our model. Our results
for shape reconstruction are similar to those achieved in comparable reconstruc-
tion approaches. However, in contrast to other methods, we also showed in our
experiments the full range of possible reconstructions that complete the given
partial shape. Furthermore, our method allows us to assign a probability to every
reconstruction.

The main application of our method is to gain more insight into the infor-
mation represented by a morphable model, and learn more about the statistical
properties of the surfaces. The model allows us to investigate how strictly a given
part determines a shape. This is of particular interest in the medical domain,
where such questions frequently arise in the planning of reconstructive surgeries
as well as the designing of prosthesis.

In future work we will investigate the question whether it is possible to auto-
matically find the parts of the surface that best determine its shape. A particular
application we have in mind is to use this information in face modelling, for in-
vestigating which parts of the face determine the identity of a person and which
parts constitute the “remaining flexibility”.
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