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Marcel Lüthi, Thomas Albrecht, and Thomas Vetter

Department of Computer Science, University of Basel, Switzerland
{marcel.luethi, thomas.albrecht, thomas.vetter}@unibas.ch

Abstract. Statistical shape models have gained widespread use in medical image
analysis. In order for such models to be statistically meaningful, a large number of
data sets have to be included. The number of available data sets is usually limited
and often the data is corrupted by imaging artifacts or missing information. We
propose a method for building a statistical shape model from such ”lousy” data
sets. The method works by identifying the corrupted parts of a shape as statistical
outliers and excluding these parts from the model. Only the parts of a shape that
were identified as outliers are discarded, while all the intact parts are included
in the model. The model building is then performed using the EM algorithm for
probabilistic principal component analysis, which allows for a principled way
to handle missing data. Our experiments on 2D synthetic and real 3D medical
data sets confirm the feasibility of the approach. We show that it yields superior
models compared to approaches using robust statistics, which only downweight
the influence of outliers.

1 Introduction

Statistical shape models have become a widely used tool in medical image analysis,
computer vision, and computer graphics. From a technical point of view, the methods
for model building are well established. The first and most challenging step is to estab-
lish correspondence among the examples. Once the shapes are in correspondence, each
shape is regarded as a random observation, and standard methods from statistics can
be applied. In practice, however, building statistically representative models is much
more difficult. Often, acquiring a large enough data set of sufficient quality constitutes
the most difficult step. This is especially true in the medical domain, where the image
acquisition process is tailored to the physician’s needs and to minimize harm for the
patient. The data available to the researcher is therefore often noisy, incomplete, and
contains artifacts.

In this paper we propose a method for building statistical shape models from data
sets which can include incomplete and corrupted shapes. The main motivation for our
work comes from a project involving the construction of a statistical model of the hu-
man skull from CT data. In many scans, teeth are missing completely or contain dental
fillings resulting in severe metal artifacts. Others show only the region of the skull that
was used to diagnose a certain pathology. As is often the case with medical data, some
skulls show severe pathologies which should not be included in a model representing
the normal anatomy.

To be able to build statistically representative models, we need to make sure that the
corrupted parts do not distort the space of possible shapes the model can represent. Our



approach identifies the corrupted parts as statistical outliers, and excludes them from the
model building. This is done by dividing the shapes into parts, and checking for each
part individually whether it is corrupted. During model building, the best reconstruction
of the corrupted parts is estimated from the remaining data sets. This is achieved in a
statistically sound way using the EM algorithm for Probabilistic PCA. Performing the
outlier analysis part-wise has two advantages: In statistical shape modeling, the obser-
vations are usually high-dimensional objects which can naturally be decomposed into
smaller structures. Rather than throwing away all the information, we still use the parts
that are intact to learn the shape variability of these sub-structures. More importantly,
however, looking for outliers on individual parts makes it possible to detect small, local
outliers, which would remain unrecognized if the shape was analyzed as a whole.

In our approach missing data and artifacts are just different instances of statistical
outliers. There are two main approaches for dealing with outliers. Outlier identification
can be performed to identify corrupted samples and exclude them from the data set.
Methods for identifying outliers are well known in statistics [1]. Most of the traditional
methods, however, consider only the case in which the number of examples is much
larger than the dimensionality of the data. Such methods are not applicable to shape
statistics. In recent years, outlier detection in high-dimensional data has been greatly
advanced in the field of bio-informatics, where outlier-ridden data is the rule and not
the exception [2, 3]. Another approach for dealing with outliers is to robustify the pro-
cedure, i.e. to adapt it such that outliers have less influence on the results. This can be
achieved by using robust statistics [4] or by incorporating prior information [5, 6].

All steps of the workflow leading to a statistical shape model, from image denois-
ing, segmentation, and registration to principal component analysis could benefit from
being robustified [4]. In our method, however, we want corrupted parts to remain visible
until the registration process has been performed. This makes it possible to detect and
eliminate them completely. Therefore we do not robustify any of these pre-processing
steps. Knowing that a part of a shape is an outlier allows us to choose an adequate
strategy to deal with it.

2 Method

We first give a brief overview of our approach. Let a set of surfaces be given. We sin-
gle out one surface as the reference shape, which we know to be complete and free of
artifacts. This reference is segmented into parts as illustrated in Figure 1(a). While the
method would work with arbitrary patches of reasonable size, we usually use anatomi-
cally significant parts for ease of interpretation. Before attempting any statistical anal-
ysis, we need to identify corresponding points in all the shapes. We assume that every
target shape can be obtained by deforming the reference surface with a smooth vec-
tor field, which we find using a non-rigid registration algorithm. Figure 1(b) shows the
result of warping the reference surface with such a vector field. We observe that both
artifacts and missing data result in (locally) unnatural deformations. We aim at identi-
fying these as statistical outliers. To do so, we rigidly align the individual parts of each
shape to the corresponding part of the reference and apply an outlier identification algo-
rithm to the locally aligned shapes. The parts that were identified as outliers are marked
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Fig. 1. Workflow of the outlier detection: 1(a) A reference surface is segmented into parts. 1(b)
Some shape used for model building are incomplete or noisy. 1(c) The reference is warped to
match the shape of the target. The missing parts lead to an unnatural deformation and can thus be
identified as outliers. 1(d) The outlier parts are reconstructed from the remaining data.

as missing in the surface. The statistical model is built from these partial data sets using
a PCA method that can handle missing data. We propose the use of the EM algorithm
for probabilistic PCA (PPCA) [7, 8]. Figure 1(d) shows a reconstruction obtained by
the PPCA algorithm.

In the following we provide the details of the methods we use in the individual steps
of the workflow. However, the approach is general and does not depend on the particular
registration or outlier identification algorithm used.

Registration To establish correspondence among the examples we use a registration
algorithm based on Thirion’s Demons algorithm [9]. Similar to the approach of Paragios
et al. [10], we do not register the surfaces directly, but rather their distance images.
After registration, each shape Γi ⊂ IR3 (i = 1, . . . , n) can be represented as a warp of
a reference surface Γ1 with a vector field φi : Γ1 → IR3:

Γi = {x+ φi(x) |x ∈ Γ1}. (1)

The vector field φi can be used to transfer any discretisation of the reference Γ1 to the
shape Γi and thus allows us to treat the surfaces as discrete random observations (i.e.
the surfaces become random vectors).

The parameter in the registration algorithm which controls the smoothness of the
vector field is deliberately chosen to be small, in order to make the outliers visible
and limit their influence on neighboring regions. In the case that smoother registration
results are required for the final shape model, the registration can be run again after the
outliers have been identified.

Procrustes Alignment The reference shape Γ1 is partitioned into m parts, which we
denote by Γ j

1 , j = 1, . . . ,m. Since the surfaces are in correspondence, the same par-
titioning is induced on all shapes. To perform outlier identification, we first align the
individual parts of each shape to the corresponding part of the reference by Procrustes
alignment. In this way only the shape of the part and not its position in space is con-
sidered in the outlier identification. As correspondence among the shapes has already



been established, the landmarks necessary for the Procrustes alignment only need to be
labeled on the reference. These points can either be selected manually or by an auto-
matic procedure. Let xj

k, k = 1, . . . , N be the landmark points on the j-th part of the
reference. To align the shapes, we find the rotation matrixR ∈ IR3×3, translation vector
t ∈ IR3 and scaling factor s ∈ IR as:

(s,R, t) = arg min
s,R,t

1
N

N∑
k=1

‖xj
k − (sR(xj

k + φi(x
j
k) + t)‖2. (2)

The minimum of (2) admits a closed form solution and can be found efficiently (see
Umeyama [11]).

Outlier Identification in High Dimensional Data The place in this workflow to iden-
tify and remove outliers is after the registration step, before they have a chance to cor-
rupt the statistics, but after they have been brought into correspondence. We use the
algorithm PCOut, proposed by Filzmoser et al. [2], which is especially designed for
detecting outliers in high-dimensional spaces. As the method is quite intricate and its
details are not critical for understanding our method, we only give a broad overview
and refer the interested reader to the original paper [2].

The main idea of PCOut is to robustly build a PCA model and then identify those
samples that do not fit well into this model. In order to build the robust PCA model, it
suffices to robustly estimate the mean and covariance matrix. PCOut uses the robust es-
timators median and MAD (mean absolute deviation) to rescale the data, and performs
a principal components analysis of this rescaled data. A weighting scheme using a ro-
bust kurtosis measure is used to identify the data sets that do not fit the PCA model well
enough, according to a user-specified threshold. This value is referred to as the “outlier
boundary”.

Probabilistic Principal Component Analysis In the last step, the parts that were iden-
tified as outliers are marked as missing in the surface. There exist several methods for
PCA that can deal with incomplete data [12]. One such algorithm, which is based on
a sound probabilistic framework, is probabilistic PCA (PPCA) [7, 8]. Formulated in
terms of the EM algorithm, PPCA can be seen as an iterative method, which simulta-
neously provides an estimation of the principal subspace and a reconstruction of the
missing data given this subspace. It corresponds to the following generative model for
an observation s:

s = Wx+ µ+ ε. (3)

That is, s is given as a linear mapping W of the latent variable x ∼ N (0, I) plus
the mean of the observation µ and some additive Gaussian noise ε ∼ N (0, σI). The
mappingW can be found using an EM algorithm, which consists of the following steps:

E-Step: X = WTW−1WTS M-Step: W new = STXT (XXT )−1.

Here, S is a matrix of all the observed data and X is the matrix of the latent variables
x. Of most relevance for our work is that this EM algorithm enables us to extend the



E-Step such that missing data can be handled. To reconstruct the complete vector s
from the incomplete data s∗, PPCA finds the unique pair x, s∗ such that ‖Wx − s∗‖2
is minimized. The completed observation can be obtained explicitly by computing s =
Wx (i.e. s is the maximum a-posteriori reconstruction of p(s|x)). In each iteration of
the algorithm the reconstruction is improved, as the current estimation of the subspace
given by W becomes more accurate.

3 Results

We performed experiments on a synthetic data set of 2D hand contours and a 3D data
set of human skull surfaces. Our implementation is solely based on freely available
software packages. The registration algorithm is a variant of the Demons algorithm, as
implemented in the Insight Toolkit [13]. The algorithms for outlier detection and PPCA
are readily available as R packages [14, 2, 15]. The same parameter settings were used
for all our experiments. To align the parts, we automatically determined 20 evenly dis-
tributed landmarks for each part. In all experiments we computed the first 10 princi-
pal components. While the individual algorithms have many parameters that could be
tuned, our experiments showed that the given default values yield good results. Only
the parameter outlier boundary for the algorithm PCOut critically influences the result
(cf. section 2). We found a value of 0.45 to work well with all our data-sets.

For the first experiment we considered the case in which only the outlier framed
in Figure 2 is present. Our algorithm successfully identifies the outlier and removes it
from the analysis. The reconstruction computed by the PPCA algorithm is shown in
Figure 3(c). Figure 3 clearly shows that in the presence of such outliers, standard PCA
will fail. For comparison, we computed a robust PCA using the PCAproj algorithm as
provided in the R package pcapp [16]. While the effect of the outlier is reduced, it still
influences the model as illustrated in Figure 3(d). We performed a further experiment,
now including all artifacts shown in Figure 2. Figure 4 shows the variation represented
by the first two principal components. The variation in the data is captured well, without
being influenced by the outliers. We observe that a cusp appears in the model. This may
happen at the borders of a segment, when an outlier part is reconstructed using PPCA,
but the model is not expressive enough to fit the remaining shape exactly. Table 1 shows
a quantitative comparison of the different methods to a ground truth model, which is

Fig. 2. The hand data set consisting of 19 hands. The hand is divided into 6 parts, as shown by the
colors in the first shape. The grey area in the shape images shows manually introduced defects.
The framed data-set marks the corrupted shape used in the first experiment.
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Fig. 3. Different methods for building shape models from noisy data: 3(a) The mean (black) and
2nd variation using standard PCA. 3(b) The mean and 2nd variation with our method. 3(c) The
reconstruction from the PPCA algorithm (red) together with the corrupted shape. 3(d) A result
from robust PCA: The outlier is still visible and leads to the thinning of the ring finger.

mean µ µ+ σ1 µ− σ1 µ+ σ2 µ− σ2 µ+ σ3 µ− σ3

PCA 5.77 13.31 12.61 15.90 16.07 15.60 14.19

robust PCA (PCAproj) 5.45 7.12 8.05 6.45 7.91 8.37 8.54

outlier PPCA 1.90 6.09 4.62 6.72 6.30 5.88 5.96

Table 1. Hausdorff distance (in mm) between the ground truth model and the models computed
from data with outliers (σi stands for 1σ in the direction of the i−th principal component).

built from the data in Figure 2. We evaluated the Hausdorff distance between the mean
and first three principal components of the ground truth, to the models computed with
regular PCA, robust PCA, and our proposed method. Our method clearly gives the best
approximation to the ground truth model.

We finally applied the algorithm to a data set of 23 human skulls. Some of the skull
shapes in the data set are shown in Figure 5. As before the artifacts are detected as
outliers and automatically reconstructed, as shown in the same figure. In this test, the
method reaches its breaking point. As a common problem in skull data is that some or all
of the teeth are missing, the reconstruction of the teeth looks slightly unnatural. This is
due to the small number of examples in which the teeth are intact. However, in the final
statistical model, this effect is only visible in the last few principle components. Further,
as the parts are still identified as outliers, a different reconstruction strategy could be
used, such as using a statistical model of the teeth. The comparison with robust PCA

mean +2σ1 −2σ1 +2σ2 −2σ2

Fig. 4. The first two principal components of the model. No artifacts are visible, despite the large
number of artifacts in the data set. At segment boundaries, small discontinuities can appear (red
circle), when the segment is reconstructed from limited data.
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Fig. 5. 3D Reconstruction 5(a) and 5(c) show two example surfaces from a skull data set. Their
reconstruction is shown in 5(b) and 5(d) respectively.

given in Figure 6 leads again to the conclusion, that in the presence of large outliers,
explicit outlier removal yields superior results than applying robust PCA.

4 Discussion

We presented an approach for building a statistical shape model in the presence of arti-
facts and missing data. The main idea is to divide the shapes into parts, and to perform
outlier detection on each part individually. Once a part is identified as an outlier, it is
removed from the data set. The remaining shape is still used to build the model. In
this way, it becomes possible to build shape models from data sets in which almost
every shape has some defect. Compared to robust approaches for model building, our
method has the advantage that it does not only downweight the influence of an outlier,
but eliminates it completely. Further, explicit identification of corrupted parts is useful,
as it enables us to choose an adequate strategy to replace it. The strategy we presented
here is to complete these parts implicitly during model building. Depending on the ap-
plication, a different approach could be to either remove the parts completely from the
analysis, or to perform a reconstruction using a dedicated shape model for this specific
part. In general, some of the methods used in our workflow might not be suitable for

(a) (b) (c) (d)

Fig. 6. Models from real data. 6(a) and 6(b) show the mean and the first principal variation using
our method. The outliers are clearly visible when using standard PCA (Figure 6(c)) and still
influence the results of robust PCA (Figure 6(d)).



some applications. For instance, the rigid alignment removes the rotational component,
and hence makes it impossible to detect rotational outliers. In the skull example, an
open jaw is therefore not detected as an outlier. However, the only step that has to be
changed in order to detect such cases is the local alignment. In this respect, the approach
we presented here should be seen as a strategy to deal with “lousy” data sets rather than
a ready-made method.

While we used anatomically significant parts to perform outlier identification, arbi-
trary surface patches could be used. How to choose these patches optimally is by itself
an interesting problem, which will be the subject of future research.
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