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Abstract. Reconstructing a person’s face from its skeletal remains is a task that
has over many decades fascinated artist and scientist alike. In this paper we treat
facial reconstruction as a machine learning problem. We use separate statistical
shape models to represent the skull and face morphology. We learn the relation-
ship between the parameters of the models by fitting them to a set of MR images
of the head and using ridge regression on the resulting model parameters. Since
the facial shape is not uniquely defined by the skull shape, we allow to specify
target attributes, such as age or weight. Our experiments show that the recon-
struction results are generally close to the original face, and that by specifying
the right attributes the perceptual and measured difference between the original
and the predicted face is reduced.

1 Introduction

Face reconstruction from skeletal remains has been practiced for well over a hundred
years and is now an important technique in forensic science. Apart from its practical
application, facial reconstruction also makes a great machine learning task. Given a set
of training images depicting both the face and skull, can we learn a mapping from these
data sets which predicts the correct face surface for a given skull?

In this paper we propose to model the normal facial surface and skull morphology
by means of two separate statistical shape models. We use a shape fitting algorithm
to fit the statistical models to Magnetic Resonance (MR) images of the human head.
Face reconstruction becomes the problem of learning the relation between the skull and
face model parameters. More generally, our method can be seen as an attempt to learn
the relationship between two separately constructed but dependent shape models. This
makes it possible to use the statistical information represented in one model when given
an observation for the other model.

In the field of facial reconstruction, two schools of thoughts have developed [1]:
Practitioners of the first school think that all reconstruction methods are inexact and the
true face can only be approximated by a facial type which characterizes many possible
faces. The second school of thought is dominated by the belief that the facial morphol-
ogy can be determined from the skull with such accuracy as to make the individual
recognizable by including subtle characteristic details of the skull morphology into the
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analysis. Our method combines features of both schools of thought. The shape models
represent both the general shape as well as the typical details of the individual’s mor-
phology. It is clear, however, that even when a perfect reconstruction of the facial shape
can be achieved, the relationship between skulls and faces is not one-to-one. The face
of a single person can change with age or weight while the skull remains the same. Our
method therefore allows to constrain the possible reconstructions by specifying such at-
tributes. Our experiments show that correctly specified attributes lead to more accurate
reconstructions. Moreover, different reconstruction results for the same individual can
be computed, which has been hypothesized to make recognition easier [2].

Related Work While traditional methods of modeling the reconstruction using clay
are still in use, many methods for facial reconstruction based on 3D computer graphics
have been developed. A recent review of current methods is given in [1]. Early ap-
proaches mimicked the manual approach and simply deform a template face to match
the typical soft tissue thickness to discrete markers [3, 4] or full soft-tissue maps [5].
These technologies also provide the key to recent methods based on statistical shape
models [6–8]. Claes et al. [6] use a statistical face model and incorporate properties
such as BMI, age and gender. In contrast to our method, the fitting of the face model is
performed by simple interpolation of skin markers. Tu et al. [8] use warping techniques
to align skulls from a training set to a new skull. After registration, a PCA model is built
from the remaining differences in facial shape. This model captures the variation due to
factors such as weight and age. Closest to our work is the work by Berar et al. [7]. They
build a joint statistical model of face and skull shape. Face reconstruction is treated as
a missing data problem, which has a straight-forward solution. While a similar goal as
ours can be achieved, the model can only be built from data sets which clearly show
both the skull and the face surface. This is an important difference in practice, as this
currently requires the use of CT images, which are much more difficult to obtain.

2 Background

At the core of our method are the statistical shape models. They efficiently capture the
shape properties and guarantee that only statistically likely shapes are represented.

2.1 Statistical Shape Models

Statistical shape models are a widely used tool in computer vision and medical imaging.
While the method is independent of the kind of shape model used, we use a Morphable
Model, which is obtained by applying Principal Component Analysis (PCA) to data
sets for which dense point-to-point correspondence has been established. From n data
sets, represented by vectors si ∈ IRm, the mean s̄ and covariance matrix Σ are calcu-
lated. PCA consists of an eigenvalue decomposition Σ = UD2UT , where U is the
orthonormal matrix of the eigenvectors of Σ, and D2 is a diagonal matrix with the
corresponding eigenvalues. With the help of a coefficient vector α, each shape can be
represented as a linear combination of the eigenvectors:

s = s(α) = UDα+ s̄. (1)
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When constructing a PCA-based morphable model, it is assumed that the shape vectors
s are distributed according to a multivariate normal distribution N (s̄,Σ). Thanks to
the representation in Equation 1, the density function takes the simple form:

p(s(α)) ∝ exp(−‖α‖2). (2)

2.2 Training Data

Three different data sets are used for reconstruction, face scans, skull scans and anchor
examples, as illustrated in Figure 1a. The face model we use in our experiments is built
from 840 structured light 3D surface scans. For each scanned individual, a number of
attributes such as age, weight, and gender were recorded in addition to the geometry and
texture of the faces. As most of these attributes can be considered to be independent
of the skull shape, we can use them to manipulate the predicted face. We can learn
the relationship ϑ = f(α) between the model parameters α and the attributes ϑ by
using a regression method (Figure 1a). For the actual face reconstruction, only the most
significant mf = 50 principal components are used.

The skull model consists of ms = 20 segmented CT scans. Its parameters are de-
noted by β. It is extremely difficult to obtain CT data sets of the full head of healthy
persons, as the scanning process exposes the patients to harmful radiation. Our CT data
set therefore includes many scans of dry skulls, which are more easily acquired in suf-
ficient quality.

In order to establish a connection between the face and the skull model, we have
acquired a third data set of n = 23 MR Images, where both the skull and the face are
visible. They can be used as anchor points between the skull and the face model. We
can fit both models to these “anchor examples”, yielding pairs (αi,βi) of face model
parameters αi and skull model parameters βi.

1

2.3 Statistical Model Fitting

Given an MR image of the head, the goal of model fitting is to find a parameter vector
α, such that the shape s(α) matches the corresponding face or skull contour in the MR
image. Moreover, it should be a likely instance of the shape, i.e. we require ‖α‖2 to
be small (cf. Equation (2)). More formally, let S ⊂ IR3 be the contour in the image
and let DS [S′] be a function measuring the distance between the contour S and S′. The
optimal parameters are given as the solution to the optimization problem:

min
s,t,R,α

DS [sR(s̄+Uα) + t] + λ‖α‖2 (3)

where s ∈ R is a scaling factor, t ∈ R3 a translation, R ∈ R3×3 a rotation matrix and
λ a weighting coefficient. For more details we refer the reader to [9].

1 It is not possible to use the MR images directly to build the skull model, as skull segmentation
from MR images requires a strong shape prior (which is, in our case, the (CT) skull model).
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3 Method

As discussed above, the relationship between skulls and faces is not one-to-one. The
face shapes offer much more flexibility than the skulls. In our case, this effect is am-
plified by the number of training examples for the face model being much larger than
the number of skulls and anchor examples. We take advantage of this additional flexi-
bility by reconstructing the face not only from the skull but from the skull and a set of
attributes. In this way, we can reconstruct faces of different weight or age which all fit
the given skull equally well.

The problem is formulated as a minimization problem for the coefficients α of the
face model. The coefficients which best fit a set of skull coefficients β and attributes ϑ
are sought as the minimum of a compound functional:

E(α) = Es(α,β) + λ1Ea(α,ϑ) + λ2Ep(α). (4)

λ1 and λ2 are weights to balance the influence of the three terms of the functional:

– The skull error Es(α,β) describes how well the predicted face fits the given skull
model coefficients β.

– The attribute error Ea(α,ϑ) measures how well the predicted face coefficients α
match the user defined attributes ϑ.

– The prior Ep(α) quantifies the probability that the predicted α represents a valid
face. It has a regularizing effect and reduces overfitting.

The goal is to find coefficients α that minimize all three terms simultaneously, as
illustrated in Figure 1b. In the following subsections we will discuss these three terms
in more depth.

Anchor
Examples
(αi,βi)

Skulls βFaces α

β = Mα
Attributes ϑ

ϑ = f(α)

(a) Schema of the data used (b) Face model parameters

Fig. 1: (a) Face and skull models are described by parameters α and β, face attributes by ϑ. For
the anchor examples, α and β are known. The mappings a = f(α) and β = Mα are learned
from the data. (b) It is assumed that several faces α fit a given skull β as well as the attributes ϑ.
We search for the α̂ with minimal norm conforming to both requirements
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3.1 Linear Skull Predictor

As the most important step of our method, we wish to establish a relationship be-
tween the previously independent skull and face model. This is achieved by learning
the relation from the face and skulls surfaces given in the training examples. We can
fit both models to these “anchor examples” to get n pairs of corresponding parameters
{(αi,βi) | i = 1, . . . , n}, cf. Section 2.3. For each individual i, αi ∈ IRmf are the
parameters of the face model, and βi ∈ IRms those of the corresponding skull in the
skull model. Using these pairs as training data, we wish to learn a mapping M , from
the face parameters to the skull parameters, i.e. Mα = β. While in principle this can
be achieved with any machine learning approach, we learn a linear mapping. Prefer-
ring linear over more complicated mappings has two reasons. First, assuming that an
observed face surface can be well represented as a linear combination of training ex-
amples, we would expect the underlying skull to be the same combination of the skulls
of the training examples, which leads to a linear mapping. Secondly, due to the limited
number of training examples, we wish to use a relatively simple model.

We now expand the above argument that if a face is well represented as a combi-
nation of example faces then its skull should be well represented by the same com-
bination of the corresponding example skulls. For the anchor examples, for which
we have both face and skull data, we write the face model parameters αi as a Ma-
trix A := [α1, . . . ,αn] ∈ IRmf×n and the skull model parameters βi as B :=
[β1, . . . ,βn] ∈ IRms×n. To predict skull parameters β̂ from face parameters α of a
newly observed face we first find a linear combination α̂ = Ac of example face param-
eters best approximating α. This is done by projecting α into the space of the example
faces:

c = (ATA)−1ATα = arg min
c
‖Ac−α‖2. (5)

the coefficient c are then used to generate the corresponding skull parameters

β̂ = Bc = B (ATA)−1ATα =: Mα. (6)

As we have relatively few examples, it is necessary to introduce some regularisation in
the projection. Therefore we change the above to:

β̂ = Bc = B (ATA+ λI)−1ATα =: Mα. (7)

The mapping matrix M = B (ATA + λI)−1AT can equivalently be determined by
ridge regression from face parameters to skull parameters:

M = arg min
M

‖MA−B‖2F + λ2‖M‖2F , (8)

where ‖·‖F is the Frobenius norm. For more details on ridge regression, see e.g. [10].
The mapping M is calculated only once from the training data and can then be used
for all subsequent reconstructions. By exchanging A and B, we can exchange the role
of faces and skulls and make a prediction in the opposite direction. For our overall
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error function Equation (4) however, we need to evaluate how well the estimated face
coefficients α fit the given skull coefficients β in skull space and therefore calculate
the mapping M from face to skull coefficients. We define the error term Es(α) in
Equation (4) as:

Es(α) := ‖Mα− β‖2. (9)

It measures how well the face coefficients α, or rather their mapping β̂ = Mα, fit
the input skull coefficients β. This is the Mahalanobis distance in skull space, which is
commonly used as a measurement for the similarity of two shapes.

3.2 Attribute Prediction from Face Coefficients

The attribute error term Ea(α,ϑ) measures how well the set of face parameters α
matches the chosen attributes ϑ. We relate these different values to each other by
learning a function f mapping the face coefficients α to the corresponding attributes
ϑ = f(α). Similar to the skull prediction, we use a training set with known matching
parameter pairs (αi,ϑi) to train the function f . As the attributes are known for all 840
face examples used to build the face model, we have a much larger training set and can
also use nonlinear functions to learn this relationship. Notably, we train a support vector
regression with radial basis function (RBF) kernels. We use the LIBSVM implementa-
tion for ν-Support Vector Regression [11] to find the parameters αj , α∗j , b ∈ IR of the
RBF support vector regression function:

f(x) =
l∑

j=1

(−αj + α∗j )e
−γ‖xj−x‖2 + b. (10)

Here, l is the number of face examples xj . The kernel width γ and the upper bound for
αi and α∗i are determined by grid search and ten fold cross validation. For each recorded
attribute, a regression function fi is learned. The attribute error function Ea(α,ϑ) is
then defined as:

Ea(α,ϑ) :=
∑
i∈I

(wi(fi(α)− ϑi))2, (11)

where I is an index set for the different attributes and the wi are normalization factors
for the value ranges of the different attributes.

3.3 Minimization and Face Prediction

We are interested only in solutions α, which represent a valid face. The last term
Ep(α) := ‖α‖2 therefore penalizes unlikely faces (cf. Equation (2)). To find the mini-
mum of the full functional (4) we use a conjugated gradient optimization method with

∇E(α) = 2(MTMα−MTβ) + 2λ1

∑
i

w2
i (fi(α)− ϑi)f ′i(α) + 2λ2α, (12)

where f ′i(x) is the derivative of the SVR function Equation (10). Note that the term Ea
in (4) is non-linear, and hence it is important to choose a good initial solution. Such an
initial solution can be obtained by direct prediction of the coefficients α from β, in the
same manner as described in section 3.1.
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4 Results

For our experiments, we have used the data sets introduced in Section 2.2. The 840
face scans were brought into correspondence with a non-rigid iterative closest point
algorithm [12] and the 20 skull surfaces were brought into correspondence with a vari-
ational optical flow approach [13]. In the following we present the experimental results
for the different parts of our algorithm individually. Finally we show results where we
manipulate the attributes for the obtained reconstruction.

4.1 Skull and Face Prediction without Attributes

First we evaluate the ability of the linear skull predictor introduced in Section 3.1 to
reconstruct a skull from given face parameters. We conducted a leave-one-out experi-
ment, comparing the predictionM trained on all but one of the anchor examples to the
ground truth given by this left out example. In this experiment a parameter selection
is used to determine a good regularization parameter λ. The best and the worst results
are displayed in Figure 2a. For the prediction error of the skulls we obtained the mean
absolute error (MAE) 1.2416 mm and its standard deviation (STD) of 1.1768 mm.

Further, we tested the face prediction presented in Section 3.4, but still without
attribute manipulation, i.e. we set the weighting parameter for the attribute term λ1 to
zero. The best and worst result are shown in Figure 2b. We observe that the largest
reconstruction errors occur in places where the soft tissue thickness can vary, whereas
the eye and mouth area are well reconstructed even in the bad examples. Errors in the
forehead and neck are mostly due to the model’s boundary conditions. While it is easy
to recognize the best predicted face, the worst reconstruction is not close enough to the
ground truth to be able to recognize the person’s face anymore. We obtained 2.8499
mm MAE and 2.4214 mm STD.

4.2 Attribute Prediction

Before performing the full face prediction with attribute manipulation, we tested the
performance of the attribute prediction function introduced in Section 3.2. Figure 3
shows the true values plotted against the predicted values. A perfect prediction would
produce values only on the diagonal. The values for weight, height and age are suf-
ficiently close to the diagonal, while the values for sex show a good approximation
of the binary attribute male/female with a continuous variable. We obtained the MAE
[0.24, 3.64, 3.21, 3.31] with STD [0.25, 4.49, 4.12, 4.18] for sex, weight, height and age.

4.3 Face Prediction

To evaluate the face prediction results we estimated for each examples of our MRI data
set the corresponding faces (figure 2b). To separate the training from the test set we
used again a leave one out scheme. To obtain an optimal reconstruction, we estimated
the attributes for the face coefficients using the trained regression function. For each of
the examples we predicted different results with varying attributes. Examples are shown
in figure 4 and 5, where we show results for the most interesting attributes, weight and
age.
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Original Prediction Prediction Error Original Prediction Prediction Error

(a) Skull prediction: Best and worst example

(b) Face prediction (without attribute manipulation): Best and worst example

Fig. 2: Results of skulls predicted from faces and vice versa. In both cases, the best and worst
results in terms of the Mahalanobis norm error were selected. The color-coded prediction error is
the per-vertex L2-error orthogonal to the surface. For the face prediction large errors occur at the
cheeks where the soft tissue thickness depends strongly on the body weight and age.

−2 −1 0 1 2
−2

−1

0

1

2

(a) Sex

40 60 80 100 120
40

60

80

100

120

(b) Weight

150 160 170 180 190 200
150

160

170

180

190

200

(c) Height

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) Age

Fig. 3: Support Vector Regression results obtained by 10 fold cross validation on the face
database. Predicted (y-axis) sex (1,-1 for male and female), weight, height and age plotted against
the true value (x-axis).
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Original Face Optimal Prediction Changed Attribute

- 20 kg + 20 kg

+ 20 years + 40 years

Fig. 4: Results of the face prediction with attribute manipulation of the original faces (first col-
umn). The second column shows the reconstruction with the optimally estimated attributes. The
renderings in the right column are obtained by varying the attributes weight and age.

5 Conclusion

While a considerable amount of research has been devoted to face reconstruction, it
is still arguable whether either of the techniques produces reliable results. Indeed, in a
study performed in 2001, Stephan et al. [14] conclude that among 4 standard techniques
for facial reconstruction, the 3D American method was the only method that gave iden-
tification rates slightly above chance rate. Our results confirm, that even though the
prediction are close in terms of the average error, the individual is difficult to recog-
nize. By constraining the result to satisfy certain attributes, the reconstruction comes
perceptually closer to the original face.

While the experimental results show the feasibility of our method, we see the biggest
advantage of our method in the formulation of the problem in terms of finding a rela-
tionship among separate shape model parameters. This formulation does allow us to
use prior knowledge about faces and skulls that can be acquired independently, using
the suitable acquisition method for each model. Furthermore, the learning approach al-
lows the use of the wide variety of algorithms developed in the field to find statistical
dependencies among the model coefficients. While, due to the limited number of train-
ing examples, we used a simple linear regression function, we believe that the results
can be improved using more data and more sophisticated methods such as canonical
correlation analysis, to single out parameters which strongly correlate between the ex-
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Original Face Prediction + 20 kg Original Face Prediction + 40 years

Fig. 5: Horizontal cuts to visualize the prediction results.

amples for predicting the shapes. The other parameters could then be set depending on
the specified attributes. Investigating this possibility will be the subject of future work.
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