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Wavelet Frame Accelerated Reduced
Support Vector Machines
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Abstract—In this paper, a novel method for reducing the runtime
complexity of a support vector machine classifier is presented. The
new training algorithm is fast and simple. This is achieved by an
over-complete wavelet transform that finds the optimal approxi-
mation of the support vectors. The presented derivation shows that
the wavelet theory provides an upper bound on the distance be-
tween the decision function of the support vector machine and our
classifier. The obtained classifier is fast, since a Haar wavelet ap-
proximation of the support vectors is used, enabling efficient in-
tegral image-based kernel evaluations. This provides a set of cas-
caded classifiers of increasing complexity for an early rejection of
vectors easy to discriminate. This excellent runtime performance is
achieved by using a hierarchical evaluation over the number of in-
corporated and additional over the approximation accuracy of the
reduced set vectors. Here, this algorithm is applied to the problem
of face detection, but it can also be used for other image-based clas-
sifications. The algorithm presented, provides a 530-fold speedup
over the support vector machine, enabling face detection at more
than 25 fps on a standard PC.

Index Terms—Cascaded evaluation, coarse-to-fine classifier,
face detection, machine learning, over-complete wavelet transform
(OCWT), reduced support vector machine (RVM).

I. INTRODUCTION

I MAGE classification tasks are time consuming. For in-
stance, detecting a specific object in an image, such as

a face, is computationally expensive, as all the pixels of the
image are potential object centers. Hence, all the pixels must
be classified.

Recently, more efficient methods have emerged based on a
cascaded evaluation of hierarchical filters: image patches easy
to discriminate are classified by a simple and fast filter, while
patches that resemble the object of interest are classified by
more-involved and slower filters. In the area of face detection
[1], cascaded based classification algorithms were introduced by
Keren et al. [2], by Romdhani et al. [3] and by Viola and Jones
[4]. To apply the detector, proposed by Keren et al. [2], the neg-
ative examples need to be Boltzmann distributed and smooth.
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This assumption could increase the number of false positive in
presence of a cluttered background. Romdhani et al. [3] use
a cascaded reduced set vectors (RSV) expansion of a support
vector machine [5]. The bottleneck of [3] is that at least one con-
volution of a 20 20 filter has to be carried out on the full image,
resulting in a computationally expensive evaluation of the kernel
with an image patch. Kienzle et al. [6] present an improvement
of this method, where the first (and only the first) RSV is approx-
imated by a separable filter. Viola and Jones [4] use Haar-like
oriented edge filters having a block like structure enabling a
very fast evaluation by use of an integral image. These filters are
weak, in the sense that their discrimination power is low. They
are selected, among a finite set, by the AdaBoost algorithm that
yields the ones with the best discrimination. A drawback of their
approach is that it is not clear that the cascade achieves optimal
generalization performances. Practically, the training proceeds
by trial and error, and often, the number of filters per stage must
be manually selected so that the false positive rate decreases
smoothly. Another drawback of the method is that the set of
available filters is limited and has to be selected manually. The
training for the classifier is “on the order of weeks” [4, Section
5.2], as every filter (about ) is evaluated on the whole set of
training examples and this is done every time a filter is added to
a stage of the cascade.

Taking the above mentioned problems into account, we de-
veloped a novel classification algorithm. The following features
make the algorithm accurate and efficient.

1) Support Vector Machine: Use of an SVM classifier that
is known to have optimal generalization capabilities.

2) Reduced Support Vector Machine: The RVM uses a re-
duced set of support vectors [3].

3) Double Cascade: For nonsymmetric data (i.e., only few
positives to many negatives), we achieve an early rejection
of easy to discriminate vectors. It is obtained by the two
following cascaded evaluations over coarse-to-fine wavelet
approximated reduced set vectors (W-RSVs): i) Cascade
over the number of used W-RSVs and ii) Cascade over
the resolution levels of each W-RSV. The double cas-
cade constitutes one of the major novelties of our approach.
The tradeoff between accuracy and speed is essentially
reduced.

4) Integral Images: As the RSVs are approximated by a Haar
wavelet transform, the integral image method is used for
their evaluation, similarly to [4].

5) Wavelet Frame: We use an over-complete wavelet system
to find the best representation of the RSVs.

The learning stage of our proposed wavelet approximated re-
duced SVM (W-RVM) is fast, straightforward, automatic and
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does not require the manual selection of ad-hoc parameters. For
example, the training time (Section III) is 2 h which is a vast
improvement over former detectors.

The paradigm of our method is that, instead starting by a poor
classifier and getting more complex by heuristical knowledge,
we first build a classifier that is proven to have optimal gen-
eralization capabilities. The focus then becomes runtime effi-
ciency while maintaining the classifier’s optimal accuracy. To
avoid complex search over the parameter space, we do not start
with the full parameter space, but with the proved optimal per-
formance of an SVM. Then we reduce the complexity by a re-
duced vector set and the over-complete wavelet approximation.
Hence, our approach is straightforward.

In our approach, we apply an over-complete wavelet trans-
form (OCWT) to the reduced support vector machine itself, and
not of the input space as a preprocessing like [7] and [8].

This paper presents the coherent and complete frame work
of our approach where we summarize and extend the confer-
ence papers [9], [10], [3]. The improvement of [9] compared to
[10] are the features 3. ii) and 5. (see above): The simulated an-
nealing optimization using morphological filters was replaced
by a sparse wavelet frame representation of the RSVs. Sim-
ulated annealing does not provide the global optimum of the
RVM approximation in all cases and it is difficult to adjust the
resolution level.

In this paper, we take advantage of recent progress in wavelet
analysis: the optimality of sparse signal approximation (rectan-
gular structure) in wavelet space. Moreover, we show the double
cascade structure of the learning and detection process that is
obtained by the proposed recursive refinement of the wavelet
frame representation of the RSVs.

In addition, we show in Section II-B3 that the wavelet frame
approach provides an upper bound of the hyperplane approx-
imation error. Exploring this characteristic the training of the
W-RVM works without heuristics and is fast. Also as an ex-
pansion, we show in Section II-B3 the relation between the hy-
perplane approximation error of the decision functions and a
training parameter to control the tradeoff between sparsity and
approximation. As demonstrated in Section IIII-C1 the param-
eter for setting the approximation accuracy does not play a deci-
sive role, opposite to former methods, using only one resolution
level.

The paper is organized as follows: Section II details our
novel training (Section II-B) and detection algorithm (Sec-
tion II-C). It is shown in Section III that the new expansion
yields a comparable accuracy to the SVM while providing a
significant speedup. In addition to the mentioned papers [9],
[10], we carried out experiments on well-known databases, like
FERET [11] to provide the comparability to other approaches.

II. WAVELET FRAME APPROXIMATED SUPPORT

VECTOR MACHINE

Support vector machines (SVM) [5] are well-known for good
generalization capabilities. Their decision function has the form

(1)

where represents the kernel, which can be shown to
compute the dot products in associated feature spaces , i.e.,

. The function
maps the data (in our case, a vector of 400 grey values

of the 20 20 observation window) into . Although can be
high-dimensional, it is usually not necessary using the kernel
function to explicitly work in that space. The SVM decision
hyperplane is determined by , with
support vectors with nonvanishing coefficients .

We performed experiments with linear, polynomial and RBF
kernels and it turned out that RBF performed best for our
specific classification problem. We also focus in this paper
on Gaussian kernel, because we can show in Section II-B3 in
an analytically way the necessary approximation bounds. The
advantage of polynomial kernels is that the reduced set vectors
can be derived explicitly, even for nonhomogenous kernels
[12], [13]. However, for good performance with polynomial
kernels, a feature space normalization is necessary. The focal
point of this paper is the transform of the SVM and not of the
feature space.

In order to improve the runtime performance, it is proposed
in [14] to approximate the SVM by a reduced SVM (RVM) in
combination with a cascaded evaluation as in [3]. The RVM
aims to approximate the SVM by a smaller set of new reduced
set vectors (RSVs), instead of the support vectors, . The
RVM approach provides a significant speedup over the SVM,
but is still not fast enough, as the image has to be convolved in
steps of full convolutions, e.g., by 20 20 RSVs. The algorithm
presented in this paper improves this method since it does not
require this convolution to be performed explicitly. Instead, it
approximates the RSVs by Haar-like vectors and computes the
evaluation of a patch using an integral image of the input image.
They can be used to compute very efficiently the dot (or inner)
product of an image patch with an image that has a block-like
structure, i.e., rectangles of constant values.

A. Integral Images Based on Haar-Like W-RSVs

During an RVM evaluation, most of the time is spent
for kernel evaluations. In the case of the Gaussian kernel,

, chosen here, the compu-
tational cost is spent in evaluating the norm of the difference
between a patch and an RSV. This norm can be expanded as
follows: . As is independent
of the input image, it can be precomputed. The sum of squares
of the pixels of a patch of the input image, is efficiently
computed using the integral image ([15], [4]) of the squared
pixel values of the input image. As a result, the computational
cost of this expression is determined by the term .

The novelty of our approach is the approximation of the
RSVs, , by optimally wavelet frame approximated reduced
set vectors (W-RSVs), which have a block-like structure, as
seen in Fig. 1. Optimally approximated means here the usage
of an optimally shifted wavelet basis that represents the image
as sparse as possible. If is an image patch with rectangles of
constant grey levels, then the term can be evaluated very
efficiently using the integral image. The term can be re-sorted
by where
is the dimension of the vectors (e.g., 400 pixel by a patch-size
20 20), is the number of rectangles of the grey
values of the rectangle and all pixel-values
of within the -th rectangle. Because can be com-
puted by the addition of three pixels of the integral image of
the input image [15], the dot product is evaluated in constant
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Fig. 1. Examples for Haar-like approximations: RSV (left) approximated using
morphological filter (H-RSV [10], middle) and using an OCWT (W-RSV, right).
The OCWT representation meets optimally the local image structure. The ratio
of the decreasing of the hyperplane distance to the used operations (see Sec-
tion II-B5) is more efficient for the W-RSV (0.73) than for the H-RSV (0.51).

time by four additions per rectangle and one multiplication per
grey value.

B. Learning Process

In contrast to several approaches like [7] and [8], we do not
wavelet-transform the input images as a preprocessing at run-
time. The novelty is that we apply the OCWT to the RVM itself.

1) Soft-Shrinkage to Build Rectangular Structured W-RSVs:
In order to exploit the integral image method a block-like ap-
proximation of the reduced set vectors must be used, i.e., they
must have a rectangular (Haar-like) structure with piecewise
constant grey values. Therefore, we use Haar wavelets and
not wavelets with more vanishing moments (e.g., Daubechies
wavelets of higher order), even if they would in general result
in a more sparse approximation.

We are searching for an approximation of a given image by
a piecewise block structured image which is as sparse as pos-
sible. This optimization problem can be casted in the following
variational form:

(2)

where denotes a particular Besov semi-norm (for more
details, we refer the reader to [16], [17] and for a detailed dis-
cussion of the problem to [18]). It is known that the Besov
(semi) norm of a given function can be expressed by means
of its wavelet coefficients. In two spatial dimensions the Besov
penalty is nothing else than a constraint on the wavelet coef-
ficients (promoting sparsity as required).

The minimization of (2) is easily obtained: Let
be the underlying wavelet basis, where is the index
set over all possible locations, scalings and wavelet
species. Then we may express and as follows:

where
and . Thus, we may completely rewrite (2) as

(3)

Minimizing summand-wise, we obtain the following explicit ex-
pression for the optimum , see, e.g., [19]:

(4)

where is the soft-shrinkage operation with threshold . Con-
sequently, the optimum is simply obtained by soft-shrinking
the wavelet coefficients of , i.e.,

(5)

where stands for the wavelet transform operator.
2) Translated Wavelet Bases to Overcome the Windowing

Effect: Typically, orthogonal or so-called nonredundant rep-
resentations and filtering very often creates artifacts in terms
of undesirable oscillations or nonoptimally represented details,
which manifest themselves as ringing and edge blurring (also
called Gibbs or windowing effect). For our purpose, it is es-
sential to pick a representation that optimally meets the local
image structure (see Fig. 1). The most promising method for ad-
equately solving the windowing problem has its origin in trans-
lation invariance (the method of cycle spinning, see, e.g., [20]),
i.e., representing the image by all possible shifted versions of
the underlying (Haar) wavelet basis. But contrary to the idea of
introducing redundancy by averaging over all possible represen-
tations of , we aim to pick only that one that optimally meets
the given image structure.

In order to give a rough sketch of this technique, assume that
we are given an RSV with pixel. Following the
cycle-spinning approach, see again [20], we have to compute

different representations of with respect to the
translates, of the underlying wavelet basis. The

scale denotes the coarsest resolution level of . The family
generated this way serves now as our reservoir of possible

wavelet representations of one single . The best shift is that
one for which we have a minimal discrepancy to the SVM hy-
perplane per operations for the kernel-evaluation. We evaluate
all possible local shifts (in our case ); hence, the global
optimum shift is guaranteed (see Section II-B5).

3) Hyperplane Approximation: We use a two stage hyper-
plane approximation from the original SVM to the reduced
SVM (RVM) and from the RVM to the wavelet approxi-
mated reduced SVM (W-RVM). The first reduction step was
computing the RVM by minimizing the hyperplane distance

in the feature space [10] and [3].
This yields with the mapping function

as used for the SVM. As outlined above,
an essential improvement can be achieved by accelerating the
numerical integration. To this end, we have suggested the use
of Haar-like sparse approximations of that generates
rectangular representations of the images and fits thus well with
the concept of integral images. Replacing by amounts
to . The change of the supporting vectors might
likely require a slight adjustment of the ’s which is done iter-
atively (see below), i.e., the second hyperplane approximation
we are proposing finally reads as

(6)

The natural question that arises is how well approximates the
reduced and Haar-like designed (6) the original SVM

, i.e., we have to consider the quantity

(7)

where the first misfit term on the right hand side is minimized
through the iterative method in [10] and [3]. It remains to ana-
lyze the second discrepancy between and .
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By making use of kernel-based evaluations of the inner prod-
ucts (and using ) and Cauchy–Schwarz, we obtain

(8)

Now, when choosing the Gaussian kernel with kernel parameter,
(optimized by the SVM training [5]), we may approximate

in (8) as follows:

(9)

Thus, the data misfit discrepancy is directly controlled by the
distance of the sparse approximation of (which is min-

imized under sparsity constraints) and the distance .
Thus, up to higher order terms, we achieve

(10)

where the relation between the error of the wavelet approxi-
mated reduced set vectors and the threshold parameter needs
to be made. This is important to control the tradeoff between
sparsity (i.e., computational cost) and the approximation (clas-
sification) preciseness per approximated vector.

At first, we consider the difference of the reduced and wavelet
approximated reduced set vectors and express them by means of
the corresponding wavelet coefficients, i.e.,

Assuming further that consists of pixel and
using (4), we have

Applying this to (8), an upper bound for the worst case error
is then given by

Neglecting higher order terms of the series, we may write

(11)

From the last formula, we see that the influence of is of
quadratic nature which assures a rapid error decay of the left
hand summand. The quantity will be studied below
when we have exploited a rule for deriving the vector . In
the limit case, , we then achieve ,
which shows that the proposed scheme acts in the limit case as
the RVM. For the case in which we really achieve complexity
reduction by sparsity and, thus, a significant gain in computa-
tional time and cost, we refer to Section III.

4) Hierarchical Evaluation via Resolution Levels: The early
rejection of easy to discriminate vectors is achieved by a double
cascade. The inner cascade is a hierarchy over the number

of incorporated W-RSVs, . After incorporating a
certain number of W-RSVs with a constant resolution level
it is more efficient to improve the approximation accuracy of
the first (already incorporated) vectors. Hence, we train in Sec-
tion II-B5 sets of W-RSVs for the outer cascade
of coarse-to-fine resolution levels. To use the cascade over the
resolution levels as inner loop and over the W-RSVs as outer
loop should result in similar performance. To keep the method
simple, we only propose one realization of the double cascade.
The tradeoff between the two cascades is determined in Sec-
tion II-C. To exploit these cascades is the superior way to re-
ject most image points by only few operations. Moreover this
novel method is robust since the adjustment of only one optimal
resolution level was sensitive in [10]. The proposed evaluation
selects the most efficient approximation accuracy automatically
at detection time based on the image patch to be classified. In
contrast to former methods, the tradeoff between accuracy and
speed is smooth, so that image points are rejected earlier. There-
fore, the approach is robust, not sensitive to the parameter choice
at training time, simple to use, and fast.

5) Algorithm to Generate Hierarchically Refined W-RSVs:
The algorithm is based on residual Haar wavelet approximations
of the RSVs which are precomputed by minimizing

via the algorithm suggested in [3].
Before presenting the algorithm, we introduce the basic quan-

tities. To find the optimal match (see OCWT in Section II-B2),
we use a translated wavelet bases with an offset up to . To
avoid the ringing effect (i.e., about a quarter
of the dimensions of ) is sufficient. Starting with computing

different initial Haar-like approximations by (5), where

Authorized licensed use limited to: BS BASEL. Downloaded on November 25, 2008 at 15:00 from IEEE Xplore.  Restrictions apply.



2460 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 12, DECEMBER 2008

is the shift of the underlying Haar wavelet
basis, we recursively define for and

(12)

where the shift denotes the best shift (selected by an opti-
mally criterion introduced below) of the residual at resolution
level , see Fig. 2. Note that may differ for each . Within
this setting each reduced set vector is then approximated at
level by . The benefit of the residual structure is that i)
converge to , if , ii) we can store all the residuals,
and, thus, they do not need to be recomputed in the cascade step
when tuning the resolution (i.e., the accuracy of the W-RSV rep-
resentation) from coarse to fine, and iii) the evaluation of the
kernel at runtime is more efficient [detailed later in (20) in Sec-
tion II-C]. incorporate the next optimal W-RSV, we have to eval-
uate the computational cost and the discrepancy of the cascaded
W-RVM to the original SVM. Such a discrepancy depends on
the resolution level and the number of incorporated W-RSVs.
Only changes for the optimization steps over all offsets .
Therefore, using the expanded form (12) in (6) the discrepancy
of the hyperplanes becomes

(13)

where we set . The cascade structure is, thus, achieved
when adding residuals and then, after reaching

, passing to the next level , i.e., subsequently
adding . Note that for each added residual , we have to
compute a new vector . Since we are
searching for the best shift for and the optimal , we
have to minimize . The optimal vector can be com-
puted explicitly. Introducing the matrix

...
. . .

...

...
. . .

...

with the th row

and the same way the matrix with entries
but where the th row is replaced with

Fig. 2. Example of recursively approximating an RSV. Left: an RSV � ;
right: W-RSV � at different resolution levels (top to bottom: � � �� �� �� ��);
middle: related residuals � (top to bottom: � � �� �� �� ��).

and th column with , we recast the discrepancy (13)
as follows:

(14)

where is the vector of the nonvanishing coefficients of the
SVM hyperplane .

Evaluating the derivative of the discrepancy (14) and setting
it to 0, the optimal is then obtained by

(15)

and depends thus on . With the explicit expression (15), the
discrepancy (14) becomes

(16)

This, of course, requires the existence of what clearly
means then linear independency of all involved ’s. If this
cannot be assured, we have to consider a regularized version of

, namely

This yields

(17)

and, thus

(18)
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With the matrix notation, the double-cascade structure be-
comes now more visible: beside the residual cascade with re-
spect to in the approximation of each by , there is for
each a matrix cascade structure with respect to that allows
to store the entries up to the th row in and up to th row
and th column in . The remaining entries for

and for can be taken from the pre-
vious level .

We summarize our findings and design the algorithm for the
learning stage of the W-RVM.

Learning Stage of the W-RVM:

1) Set and set .

2) Start with .

3) Compute for )

where denotes the best shift, is the shrinkage
function (4) with the threshold parameter discussed
in Section II-C1 and is the wavelet transform
operator.

4) Compute the decrement of the
discrepancy (18)

and the number of operations

#

where # is the number of piecewise constant
rectangles and the number of grey values of .

5) Select the best shift out of by

6) Save the rectangle structure of and the coefficient
vector

7) If , increment and proceed to step 3. If
and , increment and proceed to step

2 ( and are obtained using (21) and (22)); else,
stop.

Finally, as a by-product of this section and as a contribution to
Section II-B3, we are now able to quantify . Assume, the
SVM is given by support vectors and the RVM by re-
duced set vectors , then with and

it is common that ,
see [3]. Consequently

(19)

and since we have , by perturbation argu-
ments we also have an entry-wise perturbation estimate for the
full matrices which in turn yield an estimate for in
dependence on and (we omit a detailed examination here).
Moreover, as the approximations at resolution level tend to

as tends to 0, we have an entry-wise convergence

and, hence

C. Detection Process

The classification function of the W-RVM, denoted by
of the input patch , using W-RSVs at the levels

and W-RSVs at the level is as follows:

(20)

where the kernel is efficiently evaluated using integral im-
ages (Section II-A). For the term
only has to be computed, since can be stored
at the previous level. The thresholds are obtained automati-
cally from an R.O.C. (Receiver Operating Characteristic) for a
given accuracy. These thresholds are set to yield a given false
rejection rate (FRR) so that the accuracy of the W-RVM can
be the same as the one of the full SVM (see [3] for details).
The given false rejection rate also controls the tradeoff between
computational cost and detection performance and depends on
the requirements of the application. If only few false rejections
are acceptable (yields higher computational cost and more false
acceptances), a smaller FRR should be adjusted. This ratio be-
tween FRR and FAR (false acceptance rate) is the only param-
eter of our algorithm to be set by the user. This ensures a simple
to adjust detection approach.

Realizing our double cascade algorithm (Section II-B4) the
detection process goes as follows.
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Working Stage of the W-RVM:

1) Start at the first resolution level .

2) Start with the first W-RSV, at the level .

3) Evaluate for the input patch using (20).

4) If then the patch is classified as not being the
object of interest, the evaluation stops.

5) If is incremented and the algorithm
proceeds to step 3; else if is incremented and
the algorithm proceeds to step 2; otherwise the full
SVM is used to classify the patch.

1) Adjustment of Resolution Levels and Number of W-RSVs
Per Level: When computing an approximation of an SVM, it is
not clear how many approximation vectors should be com-
puted (see [3]). This number of vectors may vary depending on
the level of the approximation. To this end, it may be useful
to let depend on . The reason is that at a certain point of
the evaluation algorithm it is more efficient to increment (and
reset ), rather than to increment . The best value of is
computed in an offline process using a validation dataset:
is set to the smallest for which empirically

(21)

where stands for the number of operations and
stands for the number of rejections of the negative examples.

By a similar evaluation the last used resolution level can be
achieved. The optimal is the smallest that fulfills

(22)

where denotes the decision function of the full SVM (1). For
this , it is more efficient to classify the last few remaining
patches by the SVM, instead of incrementing . depends also
on the threshold parameter . The smaller , the closer is
to and the fewer resolution levels are required. However, the
number of levels does not play a decisive role as the higher ,
the sooner the evaluation process selects the next level, i.e., the
less . Therefore, our proposed approach is not very sen-
sitive to the parameter for setting the approximation accuracy
[e.g., for in (4) a constant can be
used]. Opposite to former methods, using only one resolution
level, the approach is simple and not sensitive to the parameter
choice. The evaluation selects the most efficient approximation
accuracy automatically at detection time.

III. EXPERIMENTAL RESULTS

We applied our novel wavelet approximated reduced SVM to
the task of face detection. For the training and validation of the
classifier, we used two databases. The first set was crawled from
the WWW (see Acknowledgment) and as second face database
we used the greyscale version of FERET [11]. We chose this

Fig. 3. Top:� �� distance as function of the number of vectors
for the RVM (dashed line), and the W-RVM (solid line). Bottom: Percentage of
rejected nonface patches as a function of the number of operations required.

well-known dataset to provide the comparability to other ap-
proaches.

The training set includes 3500, 20 20, face patches, and
20000 nonface patches from the first dataset. The SVM com-
puted on the training set yielded about 8000 support vectors that
we approximated by W-RSVs at resolution
levels by the method detailed in the previous section [e.g.,
using (22)]. For the OCWT [Section II-B2], we used the clas-
sical mirroring for adequately continuing the image beyond the
boundaries.

As first validation set (set I) we used 1000 face patches, and
100 000 nonface patches randomly chosen also from WWW im-
ages, but disjoint from the training examples. The first graph on
Fig. 3 plots the residual distance of the RVM (dashed line) and
of the W-RVM (plain line) to the SVM (in terms of the distance

and ) as a function of the
number of vectors used. It can be seen that for a given accuracy
more wavelet approximated set vectors are needed to approx-
imate the SVM than for the RVM. However, as shown on the
second plot, for a given computational cost, the W-RVM rejects
much more nonface patches from the validation set I than the
RVM. This explains the improved runtime performances of the
W-RVM. Additionally, it can be seen that the curve is smoother
for the W-RVM; hence, a better tradeoff between accuracy and
speed can be obtained by the W-RVM.

Fig. 4 shows the R.O.C.s, computed on the validation set I,
for the SVM, the RVM and the W-RVM. It can be seen that
the accuracies of the three classifiers are similar without (top
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Fig. 4. R.O.C.s for the SVM, the RVM, and the W-RVM (top) without and
(bottom) with the final SVM classification for the remaining patches. The FAR
is related to the number of nonfaces.

TABLE I
COMPARISON OF ACCURACY AND SPEED IMPROVEMENT

OF THE W-RVM TO THE RVM AND SVM

plot) and almost equal with the final SVM classification for the
remaining patches (bottom plot), see step 5. of the evaluation
algorithm.

Table I compares the accuracy and the average time required
to evaluate the patches of the validation set I. The speedup over
the former approach [10] is about a factor 2.5 (3.85 s). The
novel W-RVM algorithms provides a significant speedup (530-
fold over the SVM and more than 15-fold over the RVM), for
no substantial loss of accuracy.

The validation set II contains 500 frontal and half profile im-
ages from the FERET database [11]. We compared our approach
with the Viola and Jones method [4] implemented in OpenCV
(version b5a). The Viola and Jones detector yields on set II a de-
tection rate of 90.9% by 0.32 false acceptances (FA) and 0.29 s
per image (on a Pentium M Centrino 1600 CPU). Compared
to the results given in [4] the processing time is slower since
the image size of the FERET images is larger. The results on
FERET are more accurate because of the higher quality of the
images. With the W-RVM we obtained on the same PC and set
II a detection rate of 90.1% by 0.25 FA and 0.15 s processing
time per image.

Our proposed classifier is more efficient at detection, but
mainly at training time than the AdaBoost method [4] and clas-
sifies about 25 times faster than the Rowley–Baluja–Kanade
detector [1] and about 1000 times faster than the Schnei-
derman–Kanade detector [21].

To demonstrate the efficient and accurate detection algorithm,
we implemented an application using a standard webcam. Accu-
rate face detection one obtained at real-time by 25 fps (on a Intel
Pentium M Centrino 1600 CPU, at a resolution of 320 240,
step size 1 pixel, five scales).

IV. CONCLUSION

In this paper, we presented a novel efficient method for SVM
classifications on image-based vectors. The essential ingredient
was an recursively applied optimally matched wavelet transform
of the reduced set vectors. It was demonstrated on the task of
face detection.

As opposed to the RVM, the sparseness of operations required
for classification is not only controlled by the number of reduced
set vectors but also by the number of wavelets basis functions
used to approximate a reduced set vector. Hence, negative ex-
amples can be rejected with much less number of operations,
making the runtime of the algorithm very efficient. Moreover,
as the Haar wavelets are used, the SVM kernel may be evalu-
ated extremely efficient using integral images.

The main advantage of this algorithm compared to other clas-
sifiers is that the learning stage of our proposed wavelet ap-
proximated reduced SVM is fast, straightforward, automatic,
and does not require the manual selection of ad-hoc parame-
ters and is, therefore, simple. The approach is straightforward
because of our paradigm to avoid a complex search over the pa-
rameter space, by starting with the proved optimal performance
of an SVM. Then we reduce the complexity by a reduced vector
set and the over-complete wavelet approximation. The W-RVM
is simple to re-implement. In Section II-B5, we propose a de-
tailed pseudo code. The only input is the SVM and RVM. The
used matrix notation makes the double-cascaded structure vis-
ible, supports vectorized code and reduces the update rule. This
speeds up the training significantly. The parameter are adjusted
automatically by the algorithm, e.g., for the number of resolu-
tion levels and the number of approximated vectors per level
(Section II-C1). Also, the thresholds in (20) are obtained au-
tomatically. These thresholds are set to yield a given false rejec-
tion rate (FRR). The tradeoff between FRR and FAR is the only
parameter of our algorithm to be set by the user because it de-
pends on the requirements of the application (Section II-C). All
other parameters are automatically adjusted. The learning stage
is fast, because the training of the W-RVM takes about 2 h in-
stead of weeks.
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