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ABSTRACT

We present a method for face recognition by fitting a 3D Morphable
Model to shape data. Fitting is done with a a robust nonrigid ICP al-
gorithm. For recognition, it is possible to use either the fitted model
parameters, or the correspondences induced by the model. We com-
pare different similarity measures, and show that a 3D Morphable
Model allows very robust retrieval results.

Index Terms: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Object Recognition, Surface Fitting, Range Data
I.4.7: Feature Measurement—Size and Shape, Feature represen-
tation I.4.9: Applications I.5.1 [Pattern Recognition]: Models—
Statistical

1 INTRODUCTION

We tackle the task of textureless 3D face recognition. The system is
fully automatic and can handle the typical artifacts of 3D scanners,
namely outliers and missing regions. Face recognition in this set-
ting is a difficult task, and difficult tasks need strong prior knowl-
edge. To introduce the prior knowledge we use a 3D Morphable
Model (3DMM) [3], which is a generative statistical model of 3D
faces. 3DMM have been applied successfully for face recognition
on different modalities. The most challenging setting is recogni-
tion from single images under varying light and illumination. This
was adressed by [4, 7]. There a 3DMM with shape, texture and
illumination model was fit to probe and gallery images. As the
model separates shape and albedo parameters from pose and light-
ing, it enables pose and lighting invariant recognition. In [1] a sim-
ilar approach was used to fit a pure shape model to stereo images,
also enabling recognition by correlating the shape parameters. We
use the same approach for shape based face recognition. We fit a
3DMM build from 170 subjects with neutral expressions to the gav-
abDB [6] database, and compare different distance measures which
can be derived from the model fit.

An alternative to fitting a generative model is to align the probe
to each example in the database using e.g. ICP [8]. But comparing
the probe directly to every gallery image has the disadvantage of
scaling linearly with the number of entries in the gallery, while for a
model based approach only a single fit to the probe is necessary, and
the comparision to the database can then be performed by a distance
measure in the lower dimensional space of registered faces.

Another interesting model-less approach [5] compares surface
by the distribution of geodesics, which stays constant for nonrigidly
deforming (but not stretching or tearing) objects. This approach is
difficult to apply in this setting though, as the scanning produces
holes, disconnected regions and strong noise, which can best be
handled by a method which uses specific information about the ob-
ject class.

2 FITTING

The fitting algorithm used in this paper is a variant of the nonrigid
ICP work in [2]. It is a robust iterated fitting algorithm. Like other
ICP methods, it is a local optimization method, which does not
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a) Target b) Fit (a) + (b) c) Deformed
Figure 1: The robust fitting gives a good estimate (b) of the true face
surface given the noisy measurement (a). It fills in holes and removes
artifacts using prior knowledge from the face model. The fitted shape
plus the exact correspondences found can be used to extrapolate the
image by a robust poisson deformation (c).

guarantee convergence to the global mimimum, but is dependent
on the initialization. It consists of the following steps

• Iterate over a sequence of regularization values θ1 > · · ·> θN .

– Repeat until convergence.

1. Find candidate correspondences by searching for
the closest compatible point for each model vertex.

2. Weight the correspondences by their distance us-
ing a robust estimator.

3. Fit the 3DMM to these correspondences using a
regularization strength of θi.

4. Continue with the lower θi+1 if the median change
in vertex position is smaller than a threshold.

The search for the closest compatible point takes only points in ac-
count which have conforming normals. Note, that it is necessary to
balance robustness and regularization, as the right balance depends
on the noise characteristic of the data. Suitable values were deter-
mined manually for a single scan and kept constant for all experi-
ments. In step 3 the 3DMM is fit to 3D-3D point correspondences.
This is done with a gauss-newton least squares optimization, using
an analytic Jacobian and first-order Hessian.

As the database is pose normalized, we initialize the registration
such that the tip of the nose and pose coincides. This initialization is
good enough to fit the complete database fully automatic. For non
pose-normalized databases, we would either need three landmarks,
or – to keep the algorithm fully automatic – repeated random ini-
tialization.

3 RETRIEVAL

We evaluated four different distance measures.

3.1 Model Based Measures
We begin with measures which are acting in the parameter space of
the model. These have the advantage of being extremely cheap to
calculate, once the model has been fit.

3.1.1 Mahalanobis distance of shape coefficients
The first method calculates the distance between two vectors of
shape coefficients α1 and α2 expressed in Mahalanobis space as

s1(α1,α2) = ‖α1−α2‖ . (1)
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Figure 2: Measures in Mahalanobis Space outperform vertex based
measures.
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Figure 3: Impostor detection is reliable, as the minimum distance to
a match is smaller than the minimum distance to a nonmatch.

3.1.2 Angular distance of shape coefficients
In face space, caricatures lie along the rays from the origin. Map-
ping all caricatured versions of a face onto a canonical face gives
a method which has proven to have very high recognition rates [4].
To do this we use the angle between the shape coefficients in ma-
halanobis space as the distance measure.

s2(α1,α2) = arccos
(

αT
1α2

‖α1‖‖α2‖

)
. (2)

For the angular measure shown in Figure 3.1 the distribution of
distances towards the first match and the first nonmatch in the
database. This shows, that by choosing a suitable threshold it is
possible to perform face recognition with impostors, where we de-
cide if the identity is in the database or not.

These two measures give similar results, but the caricature in-
variance of the angular distance improves recall a bit. This tells us,
that in face space, the direction alone codes the identity.

3.2 Shape Based Measures
The second type of measures acts in vertex space. If we want to
compare two model instances, it does not make much sense to mea-
sure in vertex space instead of parameter space, as there is a one
to one mapping between the spaces and the parameter space is of
much lower dimensionality. But in our case we do have additional
information which can not be expressed by the model. After fitting,
some residual will remain, which is caused by three reasons. 1)
The individuals used to train the model were not from the gallery,
and we can not span the complete face space with 170 training ex-
amples. 2) The probe images have expressions, while the database
was build using neutral expressions. 3) The aquisition process in-
troduces noise. Therefore, we add more flexibility to the model by
allowing smooth nonrigid deformations of the final fit to minimize
the remaining residual. This is achieved by robustly fitting a pois-
son deformation with soft boundary and zero right hand side, where
the boundary is given by the correspondences found by the fitting
algorithm, and the deformed shape is the fitted head. Results can
be seen in Figure 2. With these correspondence established we can
use different distance measures.

3.2.1 Distance
Denote the N vertices of the registered scan i as vi

1, . . . ,v
i
N . We

use the distance after removing the rigid transformation, measuring
only in a mask defined on the model, which includes the parts which
are visible in most of the scans. We compute

s3(v1,v2) = min
R,t

∑
i
‖Rv1

i + t−v2
i ‖ . (3)

where R,t describe a similarity transform. While this measure is
straight forward, the recognition results are unsatisfying. The scal-
ing of face space which is learned from the example faces results in
an improved clustering of scans, which enables better classification
than comparisions in the original vertex space.

3.2.2 Geodesics
Inspired by [5] we tried a geodesic based measure, which should be
invariant against expression changes. We classify by comparing the
distances of a selected set of vertices, which were assumed not to
change under expressions. Denote the selected vertex pairs by P .
Note that this is different from [5], as we have already brought the
meshes into correspondence during fitting. The measure is then

s4(v1,v2) = ∑
(i, j)∈P

∣∣∣‖v1
i − v1

j‖−‖v2
i − v2

j‖
∣∣∣ (4)

Experiments with different sets of distances showed that the best
classification results were achieved by selecting all neighboring
edges of the model in the face area. Still, exactly because this
method introduces some invariance, it also reduces the precision in
the retrieval experiments. Also, it does not incorporate the knowl-
edge about face space, which was exploited in the first two methods.

4 CONCLUSION

We have shown that 3D Morphable Models provide a valuable tool
for face recognition with 98.8% recognition rate on this database.
The strong prior knowledge allows robust handling of noisy data.
Four distance measures were compared, and it turns out that the an-
gular distance in Mahalanobis space is the most accurate classifier.
It was noticably better than measuring the difference between the
registered scans. This is because the face space learned from our
training examples is constructed such that the identities are better
separated than in vertex space.

In the future we wish to make the system expression invariant,
by using a model which separates expression and identity. As we
do establish correspondence between the model and the scans, it is
trivial to add image based classification for datasets where a cali-
brated photo is available, by comparing the rectified textures.
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