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Computer Science Department, University of Basel

Bernoullistrasse 16, 4056 Basel, Switzerland
{Thomas.Albrecht, Marcel.Luethi, Thomas.Vetter}@unibas.ch

Abstract

Non-rigid registration is central to many problems in
computer vision and medical image analysis. We propose a
registration algorithm which is regularized by prior knowl-
edge in the form of a statistical deformation model. This
model is obtained from previous registrations performed on
a set of noise-free training examples given by images, or
shapes represented by level set functions. Contrary to sim-
ilar approaches, our method does not strictly constrain the
result to lie in the span of the statistical model but rather
uses the model for Tikhonov regularization. Therefore, our
method can be used to reduce the influence of noise and
artifacts even when the model contains only a few typical
examples. This automatically gives rise to a bootstrapping
strategy for building statistical models from noisy data sets
requiring only a limited number of high quality examples.
We demonstrate the effectiveness of the approach on syn-
thetic and medical images.

1. Introduction
Many current methods in computer vision, computer

graphics and medical image analysis incorporate prior
knowledge about the object under consideration in the form
of statistics computed from a set of typical examples. In or-
der to be able to extract statistical information from several
objects of a class, the objects have to be brought into corre-
spondence. That is, to every point in a reference object, one
needs to find the corresponding point in all the examples.
This problem, known as the registration problem, is gen-
erally formulated in a generic fashion as an optimization
problem. In this paper, we present a method for incorporat-
ing prior knowledge about the object class into the registra-
tion algorithm by means of a statistical deformation model.
We show that this can greatly improve the registration re-
sults in the case of noisy and incomplete data. Our partic-
ular motivation stems from two projects in medical image
analysis, where a statistical model of the femur bone and
the human skull have to be built from CT data. In this envi-

ronment, the available data is scarce, and often very noisy
(e.g. due to metal artifacts or pathologies). The method pre-
sented here directly gives rise to a method for bootstrapping
the model building from only a few high quality examples.
Once an initial statistical model has been built, it can be
used to make the registration process more robust to miss-
ing data and noise, and hence to make the statistical model
more expressive by incorporating data from low quality ex-
amples. As the method is suitable for both shape (or sur-
face) registration and image registration, we can combine
data from different sources and modalities. The method is
independent of the dimensionality of the data. However, the
memory footprint in the 3D case is typically too large for a
standard PC.

The main contribution of our paper is the inclusion of a
new regularization term in form of a statistical deformation
model that fits naturally into a variational framework for
image registration. We show how the problem can be inter-
preted as a maximum a posteriori solution in a Bayesian set-
ting. In this interpretation, the space spanned by the statisti-
cal deformation model corresponds to the prior probability
on the deformation fields. We regularize the covariance ma-
trix of this prior using a shrinkage estimate and show that
this penalizes large deviations from the space spanned by
the deformation model.

Non-rigid registration is an extremely well researched
problem and several attempts have been made to incorpo-
rate prior knowledge. For an overview of registration meth-
ods we refer to the recent survey papers by Zitova and
Flusser [22] (image registration), Audette et al. [1] (surface
registration), and in particular the book by Modersitzki [13]
for a thorough discussion of variational methods for image
registration, on which we base our work. In the related area
of image segmentation, using statistical models to guide the
segmentation has shown excellent results. See e.g. Cremers
et al. [5] for a recent review. In the area of non-rigid im-
age registration, the need for incorporating prior knowledge
into the registration algorithm has also been recognized.
The concept of statistical deformation models has been re-
searched by various group. We refer to the papers of Rueck-
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ert et al. [15], Gee and Bajcsy [9] and the references therein.
Similar to our attempt, Gee and Bajscy use a statistical de-
formation model to constrain the solution of the non-rigid
registration problem. In contrast to our work, their solution
is only sought in the space spanned by the model. In spirit
closest to our work is the work of Xue et al. [21] and Wang
and Staib [20]. However, in both approaches the statistical
regularization is performed in a separate step, whereas we
present an integrated formulation.

This paper is structured as follows. In Section 2 we de-
scribe the variational method we use for surface and image
registration, followed by a discussion of its probabilistic in-
terpretation. We present experimental results on simple 2D
shapes and real x-ray images of femur bones in Section 3.
In Section 4 we outline a bootstrapping procedure using our
formulation and briefly discuss the dependence of the dif-
ferent parameters in our model. A discussion and outline of
future work is given in Section 5.

2. Methods

In this section we present the image and shape registra-
tion algorithm we use and introduce its enhancement by the
statistical deformation model. The starting point for our al-
gorithm is the diffusion registration algorithm presented by
Modersitzki in [13], which is closely related to a variational
formulation of Thirion’s Demons algorithm [17] and varia-
tional optical flow [10]. In order to apply this method for
shape registration, we use the extension proposed by Lüthi
et al. in [12].

2.1. Image Registration

Diffusion registration is defined as a minimization prob-
lem. Given a reference image I0 : Ω → IR and a target
image I1 : Ω → IR both defined on a common image do-
main Ω ⊂ IRd, the task is to find a dense deformation field
u : Ω → IRd such that the distance between I0(x + u(x)),
the reference image warped by the deformation field u, and
the target image I1(x) is minimized. In order to minimize
the distance between two images, it has to be quantified
mathematically. If the images I0 and I1 are taken with the
same image modality, the L2-distance between I0(x+u(x))
and I1(x) is a suitable distance measure.

Because minimizing only the L2-distance with respect
to u leads to an ill-posed problem, a regularization term is
introduced into the minimization problem, according to the
concept of Tikhonov regularization [18]. Therefore, diffu-
sion registration is defined as the minimization of the fol-
lowing two-part functional with respect to u.

J [u] = D[u] + αR[u], (1)

where

D[u] = 1
2

∫
Ω

(I0(x + u(x))− I1(x))2 dx (2)

is the L2 distance measure, and

R[u] = 1
2

∫
Ω

|∇u|2 dx := 1
2

d∑
i=1

∫
Ω

|∇ui|2 dx (3)

is the Tikhonov regularization term.
From the calculus of variations, it is known that any so-

lution has to fulfill the Euler Lagrange equation:

(I0(x+u(x))−I1(x))∇I0(x+u(x))−α4u(x) = 0,
(4)

for all x ∈ Ω. Possible methods for finding a solution
to this partial differential equation for image registration
are, among others, the finite difference scheme proposed by
Modersitzki [13], Thirion’s Demons algorithm [17], or the
finite element method proposed by Dedner et al. [7].

Although we discuss the case of diffusion registration,
all methods presented in this paper can also be applied to
the large class of all image registration methods that can
be formulated in the form of Equation (1), with a distance
measure D and regularizer R.

2.2. Shape Registration

By representing shapes or surfaces by level set func-
tions, see [14], we can use this image registration method
for shape registration. We represent a shape Γ ⊂ IRd by its
signed distance function

I(x) := dΓ(x) =


dist(x,Γ) x ∈ outside(Γ)
0 x ∈ Γ
−dist(x,Γ) x ∈ inside(Γ),

(5)

where dist(x,Γ) is the Euclidean distance from x to Γ.
When this distance function is evaluated on a rectangular
domain Ω ⊂ IRd it can be interpreted as an image. Thus,
two shapes Γ0,Γ1 ⊂ IRd can be registered by registering
their respective distance images Ii = dΓi : Ω → IRd,
i = 1, 2.

Because registering the distance images alone does not
always lead to meaningful correspondence, Lüthi et al. [12]
propose representing a surface Γ by both its distance func-
tion I(x) = dΓ(x) and its mean curvature map H(x) =
div ∇I(x)

|∇I(x)| , which for each point x ∈ Ω evaluates the mean
curvature of the level set of I passing through that point.

This second feature image is included into the functional
(1) by an additional distance term

C[u] := 1
2

∫
Ω

(H0(x + u(x))−H1(x))2 dx. (6)



This is the same term as the distance term (2) with I0, I1

replaced by H0,H1.
The full functional to be minimized for this curvature-

guided shape registration with an additional weighting pa-
rameter β ∈ IR+ is:

J̃ [u] := D[u] + βC[u] + αR[u]. (7)

In a similar fashion, we can add additional feature images
along with their corresponding distance terms to the func-
tional. For instance, in medical examples we can include
the original x-ray or MRI image from which the surface Γ
was extracted as a third feature image to gain an additional
distance term X [u] and extend the functional to:

Ĵ [u] := D[u] + γX [u] + βC[u] + αR[u]. (8)

2.3. Bayesian Interpretation

In this section we outline a probabilistic interpretation of
the variational formulation of the registration problem (1),
following the exposition of Wang and Staib [20]. The main
idea is to interpret I1 in Equation (1) as a Gaussian Pro-
cess GP(µ,K). A Gaussian process is a generalization of
the multivariate normal distribution to the infinite dimen-
sional case. More precisely, it is a collection of random
variables with the property that any finite subset of it has a
joint Gaussian distribution. A Gaussian process on the func-
tions Ω → IR is completely defined by its mean µ : Ω → IR
and covariance function K : Ω× Ω → IR.

Consider a Gaussian process with mean µ = I0(x +
u(x)) and covariance function K(x, x′) = σ2

Iδxx′ , where δ
is the Dirac delta function. Under this assumption, the log
probability of observing I1 is given by

lnP (I1|u) ∝ − 1
2σ2

I

∫
Ω

(I0(x + u(x)− I1(x))2 dx. (9)

Assuming independence of the different images, we can
treat each of the distance termsD, C,X in Equation (8) sep-
arately:

lnP (I1,H1, X1|u) = lnP (I1|u) + lnP (H1|u) + lnP (X1|u).
(10)

Each such term is defined analogously to (9). As the follow-
ing discussion is independent of how many feature images
we use, we will without loss of generality assume that only
I0 and I1 are given.

The regularization term R in (1) can be interpreted as
defining a (Gaussian) prior distribution on all deformation
fields u:

lnP (u) ∝ − 1
2σ2

u

∫
Ω

|∇u|2 dx. (11)

Applying Bayes theorem, we get

lnP (u|I1) ∝ ln(P (u)P (I1|u)) = lnP (u) + lnP (I1|u)
(12)

and by plugging in (9) and (11) we obtain

lnP (u|I1) ∝− 1
2σ2

I

∫
Ω

(I0(x + u(x)− I1(x))2 dx

− 1
2σ2

u

∫
Ω

|∇u|2 dx.

(13)

Taking the sign into account, the optimization problem (1)
can be seen as maximizing the a posteriori probability for
(12), where the variances σ2

I , σ2
u ∈ IR+ take the role of the

weighting parameter α. The prior probability on the defor-
mation field favors smooth deformation fields but is other-
wise very generic. Our goal is to learn a prior distribution
from examples of the same object class and hence to be able
to quantify the probability of observing a deformation field
and to penalize unlikely results. In the following we assume
that the objects to be registered, and hence the resulting de-
formation fields, follow a Gaussian distribution.

2.4. Statistical Deformation Models

Suppose now that we have already registered a set of
n ≥ 1 images {I1, . . . , In} and possibly their curvature or
other feature images to a common reference I0 : Ω → IR.
We now wish to build a statistical model from the resulting
deformation fields {u1, . . . , un} in order to exploit the ex-
perience gained from these previous registrations for further
registration tasks.

The idea of statistical deformation models has been in-
troduced for instance by Rueckert et al. in [15]. A statistical
model based on principal components analysis (PCA) much
like those well-known in literature, [4], [3], is built from
a number of n samples. The only difference is that here
the samples aren’t images or triangle meshes but deforma-
tion fields. The same discretization with k ∈ IN degrees of
freedom is chosen for all registrations on the image domain
Ω ⊂ IRd. Thus, each discrete deformation field ui, is given
by k d-dimensional vectors and can therefore be identified
with a (rather long) vector ui ∈ IRN with N = kd.

With these vectors, a PCA model can be calculated as
usual, see [2] for details. We calculate the arithmetic mean
u = 1

n

∑n
i=1 ui ∈ IRN and the sample covariance matrix

Σ̂ ∈ IRN×N with the k, l-th entry defined by:

Σ̂kl = 1
n−1

n∑
i=1

(ui − u)k (ui − u)l. (14)

This is done in order to estimate the probability distribution
of the deformation fields. As in all PCA models, the sam-
ples ui ∈ IRN are assumed to be iid. samples drawn from
a multivariate normal distribution NN (µ,Σ) with mean
µ ∈ IRN and covariance matrix Σ ∈ IRN×N . We approx-
imated it by the estimated multivariate normal distribution
NN (u, Σ̂).



This modeling only makes sense if our deformation
fields {u1, . . . , un} are gained from registrations of accu-
rately pre-aligned images or shapes of the same (normally
distributed) object class.

Principal Components The part of PCA modeling that
is actually concerned with the principal components of the
model is the computation of the main modes of variation,
the principal components, of the estimated multivariate nor-
mal distributionNN (u, Σ̂). Although the concepts are well-
known and established, we will review them quickly to clar-
ify notation. The principal components are given as the
eigenvectors of the sample covariance matrix Σ̂ ∈ IRN×N .
The corresponding eigenvalue to an eigenvector vi ∈ IRN

is the sample variance of the model in the direction of vi

and will be denoted by σ̂2
i ∈ IR+. Because Σ̂ is a sym-

metric matrix, it does indeed have N eigenvalues, but as it
is calculated according to Equation (14) from a set of only
n samples, there are at most n nonzero eigenvalues. They
can, along with their corresponding eigenvectors, be effi-
ciently calculated with the help of a singular value decom-
position (SVD) of an (n × n)-matrix, see [8] for details.
Note that n is in general much smaller than N . The SVD
computes m ≤ n nonzero eigenvalues σ̂i with correspond-
ing eigenvectors vi. Although we will see that this won’t be
necessary in practice, the remaining N −m eigenvectors to
the eigenvalue 0 can be calculated with the Gram-Schmidt
method as the orthogonal complement in IRN to the span
of {v1, . . . , vm}. The full set of N eigenvectors forms an
orthonormal basis of IRN and, expressed in this basis, Σ̂ be-
comes a diagonal matrix with (σ̂2

1 , . . . , σ̂2
m, 0, . . . , 0) as its

diagonal. In other words, if we define S ∈ IRN as the or-
thogonal matrix with {v1, . . . , vN} as its columns, we have

STΣ̂ S = Λ̂ := diag(σ̂2
1 , . . . , σ̂2

m, 0, . . . , 0), (15)

where diag(a) denotes a diagonal matrix with the elements
of the vector a ∈ IRN as its diagonal.

In order to evaluate the probability density function of
the estimated multivariate normal distribution NN (u, Σ̂),
we need to be able to invert Σ̂. However, as Σ̂ has a rank
of only m ≤ N , this is not possible. It would be possi-
ble to restrict our whole registration problem to the span of
{v1, . . . , vm}, which is the same as the span of the sam-
ples {u1, . . . , un}. If we let S ∈ IRN×m be the matrix
with {v1, . . . , vm} as its columns, the projection of Σ̂ to
this space is given by S diag(σ̂2

1 , . . . , σ̂2
m) ST. It can eas-

ily be inverted by inverting the σ̂2
i . This approach is used

in a number of papers on the topic, e.g. [20]. However, es-
pecially if the number of samples n is rather small we may
not want to strictly constrain our problem to the very limited
span of these few samples.

Covariance Estimation Because we use the sample co-
variance matrix Σ̂ defined by (14) as an estimator for an
assumed covariance matrix Σ ∈ IRN×N , our PCA model
assigns a variance of zero to all directions in IRN deviat-
ing from the span of the samples, i.e. the model defines the
probability of observing a deformation field u ∈ IRN as
zero if it is not in the span of {u1, . . . , un}. In reality how-
ever, we have to assume that there are many more nonzero
eigenvalues in the correct covariance matrix Σ, and we have
simply not been able to recover them in our estimation be-
cause we have not seen enough samples, yet.

This is why the sample covariance matrix Σ̂ is in fact
a very poor estimator of the covariance matrix for a small
number n < N of samples. This problem is of course
well known and many efforts for improved covariance ma-
trix estimation have been proposed, see [6, 16] for instance.
The simplest improvement proposed in the latter, which
is known as shrinkage estimation, is to compute a convex
combination of a multiple of the N -dimensional identity
matrix IN and the sample covariance matrix Σ̂. In this way,
we gain a new estimator Σ̂2 of the covariance matrix:

Σ̂2 = (1− λ) Σ̂ + λ σ2
0IN , (16)

where λ ∈ (0, 1] is known as the shrinkage intensity and de-
termines the weight between Σ̂ and σ2

0IN . It can be chosen
optimally according to [16]. σ2

0 ∈ IR+ can be interpreted as
the variance we assume in all directions if we don’t use Σ̂
at all. So when we use Σ̂2 instead of Σ̂ as an estimator for
Σ, we no longer assume the variance in directions perpen-
dicular to the span of the model to be zero, but rather to be
λ σ2

0 . In the direction of an eigenvector vi corresponding to
a nonzero eigenvalue σ̂2

i of Σ̂, the variance defined by Σ̂2 is
(1− λ) σ̂2

i + λ σ2
0 . This can be deduced from the following

calculation:
Let S, Λ̂ ∈ IRN be defined as in Equation (15). We then

have:

STΣ̂2 S = ST
(
(1− λ) Σ̂ + λ σ2

0IN

)
S (17)

= (1− λ) STΣ̂ S + λ σ2
0 STINS (18)

= (1− λ) Λ̂ + λ σ2
0IN (19)

= diag


(1−λ) σ̂2

1+λ σ2
0...

(1−λ) σ̂2
m+λ σ2

0

λ σ2
0...

λ σ2
0

 , (20)

where in Equation (19) we have used (15) and the fact that
S is an orthogonal matrix and therefore STS = IN .

Equation (20), shows that our shrinkage estimator Σ̂2 has
full rank and is in fact diagonalized by the transformation
matrix S made up of the eigenvectors of Σ̂. Hence, the



inversion of Σ̂2 is trivial:

Σ̂−1
2 = S diag


((1−λ) σ̂2

1+λ σ2
0)−1

...
((1−λ) σ̂2

m+λ σ2
0)−1

(λ σ2
0)−1

...
(λ σ2

0)−1

ST, (21)

which can be split up as

= S diag


((1−λ) σ̂2

1+λ σ2
0)−1−(λ σ2

0)−1

...
((1−λ) σ̂2

m+λ σ2
0)−1−(λ σ2

0)−1

0...
0

ST

+ S diag

(
(λ σ2

0)−1

...
(λ σ2

0)−1

)
ST.

(22)

For convenience, we define η2
i := ((1− λ) σ̂2

i + λ σ2
0)−1 −

(λ σ2
0)−1 and arrive at the expression:

Σ̂−1
2 = S diag

(
η2
1...

η2
m

)
ST + (λ σ2

0)−1 IN , (23)

where S ∈ IRN×m denotes the matrix with {v1, . . . , vm},
i.e. the first m rows of S and the first m eigenvectors of
Σ̂ as its columns. Note that the final expression for Σ̂−1

2

no longer contains the full matrix S ∈ IRN×N . Therefore,
as already mentioned before, in practice we never need to
calculate S but rather only its much smaller sub-matrix S,
which can be efficiently calculated with the singular value
decomposition of Σ̂.

Density Function With our invertible covariance esti-
mator Σ̂−1

2 , we can now calculate the probability density
function of the estimated multivariate normal distribution
NN (u, Σ̂2). It is defined as f : IRN → IR+

f(u) = 1

(2π)
N
2 det(Σ̂2)

1
2

exp
(
− 1

2 (u− u)TΣ̂−1
2 (u− u)

)
.

(24)

If we let C := (2π)
N
2 det(Σ̂2)

1
2 and plug in Equation (23)

we get:

f(u) = 1
C exp

(
− 1

2 (u− u)T S diag

(
η2
1...

η2
m

)
ST (u− u)

)
· exp

(
− 1

2(λ σ2
0)

(u− u)T(u− u)
)

,

(25)

= 1
C exp

(
− 1

2 |diag
( η1...

ηm

)
ST (u− u)|2

)
· exp

(
− 1

2(λ σ2
0)
|u− u|2

)
,

(26)

where |v|2 = vTv is the squared Euclidean norm of a vec-
tor v. With Equation (26) , we can now evaluate the likeli-
hood that a vector field u ∈ IRN belongs to our PCA model.
Next, we would like to add a term into our registration func-
tional (1) and its extension (7) that favors solutions that are
likely to belong to our model.

Continuous Formulation The problem arises that the
functionals (1) and (7) are given in a continuous varia-
tional formulation with vector fields u : Ω ⊂ IRd → IRd

and our model is given in form of discrete vector fields
u ∈ IRN . However, provided that we use the same refer-
ence discretization with N degrees of freedom for all regis-
trations, Equation (26) can be used directly in the numerical
implementation. Yet, we briefly introduce a continuous for-
mulation, which, thanks to results from functional analysis,
takes a similar form as Equation (26). Due to space limita-
tions, we omit all details and state only its final form.

After replacing the discrete multivariate normal dis-
tribution NN (µ,Σ) with a continuous Gaussian process
GP(µ,K), we can perform analogous calculations as in the
discrete case and end up with a density function for contin-
uous deformation fields, in analogy to Equation (26).

f(u) = 1
C exp

(
− 1

2

m∑
i=1

〈 ηivi, u− u 〉2L2

)
· exp

(
− 1

2(λ σ2
0)
‖u− u‖2L2

)
,

(27)

where we have again set η2
i := ((1 − λ) σ̂2

i + λ σ2
0)−1 −

(λ σ2
0)−1. The eigenfunctions {v1, . . . , vm} exist in the

continuous case thanks to Mercer’s theorem.

2.5. Statistical Deformation Prior

Recall from Section 2.3 that the goal is to find a prior
distribution which penalizes unlikely deformation fields.
Equation (27) provides us with a regularized density esti-
mation. The assumption of the statistical model is that the
deformation fields for a given object class are distributed
according to this density function. Thus, using the notation
of Section 2.3 we obtain:

S[u] := ln f(u) ∝− 1
2

m∑
i=1

〈 ηivi, u− u 〉2L2(Ω)

− 1
2(λ σ2

0)
‖u− u‖2L2(Ω).

(28)

Using a convex combination of S and the smoothness prior
R from Equation (3) as a regularization term, we arrive at a
prior distribution that enforces both smoothness and penal-
izes unlikely deformations:

lnP (u) ∝ ξR[u] + (1− ξ)S[u], (29)



where ξ ∈ [0, 1] determines the trade-off between the two
terms. Plugging this term into Equation (12) as the new
prior (or Tikhonov regularization term) for u, we arrive at a
statistically regularized version of the registration problem:

J [u] = D[u] + α (ξR[u] + (1− ξ)S[u]) , (30)

Note that since all registrations used for building the sta-
tistical model are performed with the same reference, all de-
formation fields are relative to that reference, and therefore
only registrations onto that reference can be constrained
with this model.

Geometric Interpretation Equation (28) admits an inter-
esting geometric interpretation. The second term on the
right hand side states that the probability of a solution
decreases exponentially with its distance from the mean.
Hence, all the solution on a hyper-sphere around the mean
are equally likely. The first term is a projection onto a
hyper-plane spanned by the first m eigenfunctions (princi-
pal components) of the covariance matrix. Under the usual
assumption of linearity of the object classes (see Vetter and
Poggio [19]) any point on this plane represents an object
of the class, and the probability of observing the object
decreases exponentially with the distance from the mean.
Most approaches to statistical models consider only this
plane to search for solutions. In our formulation (28) this
corresponds to letting the variance σ2

0 tend to 0 and setting
the shrinkage intensity λ = 0. By choosing σ2

0 , λ 6= 0 we
search for solutions in a hyper-ellipsoid around the hyper-
plane that is spanned by the principal components.

3. Experimental Results
The experiments in this section show the resilience of

our method to missing and noisy data. For all the experi-
ments, we align the shapes as a pre-processing step by rigid
registration using landmark points. To avoid being stuck
in a local minimum, we perform the registration using a
multi-resolution discretization. As a basis for finding a min-
imum of the discretized version of (30), we use Thirion’s
Demons algorithm as implemented in the Insight Toolkit
[11]. The parameters are set individually for each experi-
ment, but are chosen to be the same for the statistically reg-
ularized method and the standard method without statistical
regularization.

Hands In the first experiment we built a statistical model
from the outline of 9 hands (Figure 1). With this model as
prior information, we register the reference image to a new
image not contained in our model, in which one of the fin-
gers has been cut off. Figure 2 shows the result we obtain by
warping the reference image with the resulting deformation
field. It can be seen that with the statistical regularization

Figure 1. The shapes that are used to build the statistical model.
The upper-left hand is the shape we use as the reference.

Figure 2. The reference shape (thin blue line) is registered onto
a hand with the index finger missing (black shape). The red line
shows the warp of the reference with the resulting deformation
field, without statistical regularization (upper image), and with sta-
tistical regularization (lower image).

the surface is accurately matched. Where there is no data
due to the missing finger, it is interpolated in a statistically
meaningful way. In contrast, without the statistical regular-
ization, the registration does not find meaningful correspon-
dences in the place where the data is missing.



Figure 3. The first four out of 19 femur bones used to build the
statistical deformation model. The first bone is the reference. Both
shape and image information were used in the registrations.

Bones In the second experiment, we built a statistical de-
formation model from 19 femur bones. We have used the
shape registration method including the x-ray image infor-
mation (Figure 3) by minimizing the functional (8).

In Figure 4 we try to register the x-ray image of the ref-
erence to a noisy x-ray image of a bone not contained in
the model. In this case, no shape information is used as the
noisy image would not have been easy to segment. The first
image in Figure 4 shows the result of attempting to regis-
ter the x-ray images directly without statistical information.
The outline of the reference bone is displayed in the image
and gives an indication of how well the warped target im-
age matches the reference. While the outline seems to be
reasonably well matched, we have to observe that the reg-
istration distorts the image in an unnatural way and fails to
establish correspondence, visualized by the vectors of the
deformation field. For instance, the bone marrow canal in
the shaft of the bone is completely distorted by the registra-
tion. The second registration is regularized with the statisti-
cal model and yields a more natural warp and deformation
field. We observe that the contour of the registered bone
does not completely coincide with the target contour, be-
cause, as always, there is a trade-off between regularization
and matching accuracy.

4. Bootstrapping and Parameter Tuning
The experimental results presented in Section 3 show

how shapes with severe artifacts can be accurately regis-
tered, given an expressive enough statistical model. This
suggests the use of a bootstrapping strategy. Assume we
have a number n of images available. We order the im-
ages according to their quality and start to register the im-
age with the least noise. After two registrations, we can
already obtain (an admittedly very rough) estimate of the
deformation probability distribution. In the next registra-
tion the statistical model can already be used to slightly pe-
nalize unlikely deformations, i.e. those deviating strongly
from the estimated mean. The more examples we include,
the better the estimates become and the more weight we can

Figure 4. Registration of a noisy CT image onto the reference. In
the first try, the registration matches the reference’s outline (light
yellow) accurately but distorts the image unnaturally, see the shaft
for instance. In the second try, the statistical model is used and
both the warp and the deformation field (arrows) look much more
natural.

put on the statistical regularizer. In this way, it is possible
to include data sets with severe artifacts, once the statistical
model has become reliable enough. For instance, we could
use many noisy x-ray images like the one in Figure 4 for
extending our statistical model.

As the new regularization term is formulated as an es-
timator of a probability distribution, results from statistics
are readily applicable. In [16], Schäfer et al. show how to
choose the shrinkage parameter optimally. The remaining
parameters should be set depending on a confidence mea-
sure of the estimator.

5. Conclusion
In this paper we have presented an approach for incor-

porating prior knowledge in the form of a statistical defor-
mation model into a class non-rigid registration algorithms.
The prior knowledge is added to the registration method as



an additional regularization term, complementing the usual
smoothness term. The statistical deformation model is built
from a set of previous registration results, i.e. dense defor-
mation fields. Our experimental results show that the new
regularization greatly improves registration results in the
case of noisy and incomplete data. Indeed, the prior knowl-
edge allows us to register data-sets which are otherwise too
noisy to lead to useful results.

In contrast to other approaches, our method does not re-
strict the solution to lie in the span of the examples of the
model. It can therefore be applied to generate new defor-
mation fields that can themselves be used to increase the
expressiveness of the model. This observation leads to a
bootstrapping strategy for building a statistical model from
noisy or incomplete data-sets, requiring only a few high
quality examples.

The use of statistical deformation fields has the advan-
tage that it can be applied to registration of surfaces repre-
sented by level-sets as well as images of any modality. For
some applications, however, it might be a limitation that the
deformation fields are always relative to a reference image,
i.e. registration can only be performed from the reference
image used to build the statistical model. It also requires an
initial alignment of all images to the reference image, using
for instance landmark-based rigid registration. For our ap-
plication of building statistical models, this is a small price
to pay compared to the largely increased number of data-
sets we are able to register using this method.

In this work we have not addressed the question of how
the newly introduced parameter, i.e. the trade-off between
smoothness regularizer and statistical regularizer, can be
chosen automatically. A detailed study of how to choose
the parameter optimally, based on statistical measures of
confidence, is the topic of future work. Another question
we are going to address in upcoming work is finding a more
memory-efficient representation of the statistical deforma-
tion fields, such that the methods becomes feasible to use
with high-resolution 3D data-sets on a standard PC.

Acknowledgments This work was funded by the Swiss
National Science Foundation in the scope of the NCCR CO-
ME project 5005-66380 and the Hasler Foundation in scope
of the HOVISSE project. We would like to thank the Uni-
versity Hospital of Basel for providing the x-ray images.

References
[1] M. A. Audette, F. P. Ferrie, and T. M. Peters. An algorith-

mic overview of surface registration techniques for medical
imaging. Medical Image Analysis, 4:201–217, 2000. 1

[2] C. Bishop. Pattern recognition and machine learning.
Springer, 2006. 3

[3] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In SIGGRAPH ’99, pages 187–194. 1999. 3

[4] T. Cootes, C. Taylor, D. Cooper, J. Graham, et al. Active
shape models-their training and application. Computer Vi-
sion and Image Understanding, 61(1):38–59, 1995. 3

[5] D. Cremers, M. Rousson, and R. Deriche. A Review of Sta-
tistical Approaches to Level Set Segmentation: Integrating
Color, Texture, Motion and Shape. International Journal of
Computer Vision, 72(2):195–215, 2007. 1
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