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Abstract We present a model-based approach for seg-
mentation of the skull from T1 weighted MR images of
the human head. Segmentation is performed by fitting a
morphable skull model into a pre-segmented version of
the image. This yields a segmentation result that is con-
strained to the normal skull anatomy and thus gives a
statistically meaningful approximation of the skull, even
in places where the bony structure cannot be distin-
guished from the surrounding tissue. We propose a multi-
resolution approach to model-fitting that leads to an im-
proved convergence rate. Further, we show how a hierar-
chy of statistical models can be used to increase the flex-
ibility of the statistical model and thus to obtain more
accurate segmentation results. To validate our method,
we present experimental result using a statistical model
based on 17 example skulls acquired from segmented CT-
images. The results show that a good approximation to
the skull structure can be found. Our experiments con-
firm that by incorporating strong prior knowledge even
such difficult segmentation tasks as skull-segmentation
from MR images become feasible.

Keywords Segmentation · Statistical Models · MRI ·
Multi-resolution · Model fitting

1.
University of Basel
Department of Computer Science
Bernoullistrasse 16
CH-4056 Basel
E-mail: marcel.luethi@unibas.ch
E-mail: anita.lerch@unibas.ch
E-mail: thomas.albrecht@unibas.ch
E-mail: thomas.vetter@unibas.ch

2.
Hightech Research Center
University of Basel
Schanzenstrasse 46
CH-4056 Basel
E-mail: zkrol@uh-basel.ch

1 Introduction

Models of the human anatomy play an increasingly im-
portant role in understanding the human physiology and
they start to become a prerequisite for many medical
applications. For instance, cranio-facial interventions re-
quire the detailed planning of the surgery based on a
model of the patient specific anatomy. Modern planning
is usually performed using a combination of different di-
agnostic data-sets. While the different soft-tissues and
vessels are relatively easy to segmented from MR im-
ages, the bony structure is hardly visible. Therefore, in
practical surgery planning an additional CT image is ac-
quired, which exposes the patient to additional harmful
radiation. In this article we present a method for segmen-
tation of the skull directly from T1 weighted MR images,
using a morphable model (i.e. a statistical shape model)
to estimate the skull-structure where it is not visible in
the image.

Magnet resonance imaging is commonly applied in
clinical practice to help diagnose or monitor a treatment.
In contrast to computer tomography, the image acqui-
sition poses almost no risk to the patient and should
therefore be preferred over CT whenever possible. Un-
fortunately, the segmentation of bones in MR images is a
difficult problem, as bony structure is hard to distinguish
from the surrounding tissue and virtually impossible to
distinguish from air in the images. The low resolution of a
MR image and the occurrence of very fine bony structure
in the human skull, makes skull-segmentation from MR
images a particularly challenging problem. To overcome
these difficulties, we exploit prior knowledge about the
shape of normal skulls in the form of a statistical shape
model. The statistical model is built from a number of
skull-surfaces, segmented from CT data-sets. Hence, our
method uses knowledge learned from CT data to restrict
the solution space in the more difficult problem of seg-
menting MR images.

Our method proceeds in two steps. In a first step,
we perform a pre-segmentation of the skull by apply-
ing simple thresholding and morphological operations to
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the image. This yields a rough outline of the skull. In
a second stage we fit a statistical shape model to the
pre-segmented image. The fitting is done in a hierarchi-
cal way. First, a statistical model of the complete skull
is fitted into the image. This yields a good inital esti-
mate of the skull structure and allows to localize the in-
dividual anatomical structures, such as the cranium and
the mandible. Then, a separate statistical model is fitted
for each individual part, yielding a more accurate result.
The fitted model serves as an approximation to the ac-
tual skull structure and provides complete information
even in places where the bony structures are not visible
in the MR image.

The contributions of this work are the formulation of
a novel, multi-resolution fitting procedure that leads to
improved convergence and allows to increase the flexibil-
ity by fitting a hierarchy of statistical models. Further,
we present a new approach to skull-segmentation from
MR images, by using a combination of a simple intensity
based algorithm and model fitting.

Related work and outline. Automatic segmentation of
medical images is an extremely well researched problem
and the need for incorporating statistical information to
constrain the segmentation process has clearly been rec-
ognized [4]. The use of statistical shape models for identi-
fying structures in (2D) medical images has already been
proposed by Cootes et al. [3] in 1993 and since used for
segmentation of various structures from 3D CT and MR
images [12,13,15,11,18]. All these methods have been
evaluated on rather simple anatomical structures (such
as the femur or pelvic bone). However, no results were
shown for more complex structures such as the human
skull. The literature on skull segmentation is very sparse
in general. Results for the segmentation of the skull from
CT images are shown by Kang et al. [10], where, in a
multi-step approach, a sequence of standard segmenta-
tion techniques is applied to extract the bony structure.
Dogas et al. [7] use techniques from mathematical mor-
phology to segment the skull from MRI images. Hifai et
al. [16] use a level-set segmentation technique to deform
the contour of the scalp to fit the skull structure.

The paper is organized as follows. In section 2 we
present the mathematical basics of statistical models and
the methods we applied for building our skull-model.
Section 3 discusses the algorithms we use for pre-segmen-
tation of the MR images. The fitting procedure is ex-
plained in section 4. We present experimental results in
section 5 followed by a discussion of our method in sec-
tion 6.

2 Statistical Skull Model

Most segmentation algorithms are defined in a generic
way, in the sense that these algorithm would work on
a grey-scale image of any anatomical structure. While

Fig. 1 The mean skull and its first two modes of variation.
Top to bottom: 1st Mode of variation (µ± 2σ)
Left to right: 2nd model of variation (µ± 2σ)

these algorithms are flexible, they do not exploit all the
available information. For difficult segmentation prob-
lems, such as skull segmentation from MR images, we
need to incorporate strong prior knowledge into our al-
gorithm. A powerful and versatile approach for incor-
porating prior knowledge is by using a statistical shape
model.

The main idea behind a statistical shape model is
to span a space of shapes (3D Surfaces) from a set of
normal examples by taking linear combinations of these
examples [1]. A probability distribution on this space is
defined, which quantifies the probability of observing a
particular linear combination. Usually this is done by fit-
ting a normal distribution to the example data. In many
image processing tasks, and in particular in image seg-
mentation, the use of a statistical model makes it possible
to constrain the search space to normal instances of the
given shape.

Figure 1 shows an example of the statistical shape
model of the human skull, used throughout this paper.
It shows the mean skull, as well as the first two principal
modes of variations.

We now present the details of building the statistical
shape model of the human skull. Let {Γi|Γi ⊂ R3}ni=1

be n surfaces of normal skulls. Define an arbitrary sur-
face, say Γ1, as the reference surface, and assume that
Γ̂1 is a suitable discretization of N points (for instance,
Γ̂i is represented as a triangle mesh). We represent the
reference surface as a shape vector x1 ∈ R3N ,

x1 = (v1
x, v

1
y, v

1
z , . . . , v

N
x , v

N
y , v

N
z )T

where the vector vi = (vix, v
i
y, v

i
z) represents the x, y, z

coordinates of the i-th vertex of Γ̂1. Using the non-rigid
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registration algorithm propsed by Dedner et al. [5], we
obtain a vector field φ ⊂ R3 → R3 such that the surface
Γi can be approximated by the shape vector

si =(v1
x + [φ(v1)]x, v1

y + [φ(v1)]y, v1
z + [φ(v1)]z, . . .

. . . , vNx + [φ(vN )]x, vNy + [φ(vN )]y, vNz + [φ(vN )]z)T

such that corresponding components among all xi rep-
resent corresponding points (e.g. the j−th component
represents the top of the nasal bone in all the exam-
ples). The shape vectors {si}ni=1 are observations of the
(unknown) normal distribution N (µ,Σ). The mean and
covariance are estimated using the usual formulas

µ =
1
n

n∑
i=1

si (1)

Σ =
1
n

∑
(si − µ)(si − µ)T . (2)

Note that in all practical situations n� N and hence
Σ is of at most rank n. In these cases the probability den-
sity function does not exist, as to evaluate the density
we need to be able to invert Σ. Using principal compo-
nent analysis (PCA), we can, however, define a normal
distribution of the subspace spanned by the n examples.

Principal Component Analysis Although PCA is a well
known method, we will give a rather detailed derivation,
in order to clarify notation and introduce the concepts
used later in section 4. We start by defining the mean
free data matrix X ∈ R3N×(n) as

X =
[
s1 − µ . . . sn − µ

]
,

with columns xi := si − µ. Let ñ = rank(X) be the col-
umn rank of X. Using the singular value decomposition
(see e.g. Demmel [6]), we can write

X = UDV T . (3)

where U =
[
u1 . . . , uñ

]
∈ R3N×ñ is a matrix satisfying

UTU = I, D = diag(σ1, . . . , σñ) ∈ Rñ×ñ with ñ strictly
positive diagonal entries σi and V T =

[
v1 . . . vn

]T ∈
Rñ×n is a matrix, satisfying V TV = I. By choosing a
3N -by-(3N − ñ) matrix Ũ so that

[
U Ũ

]
is square and

orthogonal (for example by using the Gram-Schmidt pro-
cess) we can write

Σ =
1
n

n∑
i=1

(si − µ)(si − µ)T =
1
n

n∑
i=1

xix
T
i =

1
n
XXT

=
1
n
UDV TV DUT = [U Ũ ]

[
1
nD

2 0
0 0

]
[U Ũ ]T .

(4)

Equation (4) is an eigendecomposition of Σ and hence
the columns of [U Ũ ] are the eigenvectors of Σ. From

equation 4 we see that, expressed in this basis of eigen-
vectors, Σ becomes a diagonal matrix. It further follows
that the diagonal entry σ2

i of D2 is the variance that is
captured by the associated eigenvector ui. We refer to
the eigenvector ui as the i-th principal component.

Defining the probability density is now straightfor-
ward. As all the variance in our data is captured by the ñ
principal components, we represent our data with respect
to this basis, and assume that the observations follow the
normal distribution N (UTµ, 1

nD
2).1 The probability of

observing the shape vector s ∈ RN is given by

p(s) = z exp (−1
2
UT (s− µ)

1
n
D2−1

UT (s− µ)T ). (5)

where z = n
(2π)(n−1)/2|D|1/2 is the normalization factor.

We usually express the data as a linear combination of
the ui:

s = µ+ Uα

and call the coefficients α the PCA-coefficients. In this
representation the probability density has a particularly
simple form, namely

p(s) = z exp(α
1
n
D2−1

αT ) = z exp(
1
n
‖D2−1

α‖2).

This expression states that the probability of observing
a given shape vector s is proportional to the weighted
norm of its pca-coefficients - a fact turns out to be useful
in section 4.

It is important to stress at this point that any linear
combination of the principal components ui can be ex-
pressed as a linear combination of the example data and
vice-versa. To see this, we right-multiply (3) by V D−1

to obtain an expression for the matrix of principal com-
ponents U in terms of the data-matrix X:

U = XVD−1. (6)

Let α = (α1, . . . , αñ)T , β = (β1, . . . , βn) be coefficient
vectors. Then
ñ∑
i=1

αiui = Uα = XVD−1α = Xβ =
n∑
i=1

βixi.

Hence we have the relations

β = V D−1α (7)

and

α = DV Tβ. (8)

This fact allows us to keep the same linear combination
of example vectors, while freely changing among different
basis representations.

1 This is in fact a rather strong assumption. It states that
the shape-space is completely spanned by the n given ex-
amples, i.e. all the possible shapes can be represented as a
simple linear combination of the given data. For small n, this
is clearly not the case. This problem can be addressed by reg-
ularization (see e.g. Schäfer et al. [17]). This is, however, out
of scope for this paper.
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(a) (b) (c)

Fig. 2 The pre-segmentation procedure. The original image
(a) is masked with the brain and scalp mask (b) to obtain
after thresholding the skull-mask (c).

3 Pre-segmentation

The pre-segmentation step provides an automated pro-
cedure for finding a rough approximation of the skull
structure, by means of simple image-processing oper-
ations. While segmenting bony structure directly from
MR images is difficult, the different soft-tissue types can
easily be distinguished. Fortunately, the brain and scalp,
which are easy to segment, constrain the position of the
skull rather well. We make use of this fact by segmenting
the scalp and the brain and use them to mask the MRI-
image. On the remaining region, we perform a threshold
operation using the Otsu-threshold (the threshold value
which maximizes the within class variance) and select
the largest connected component. The different segmen-
tation results are shown in figure 3.

Scalp-segmentation For scalp segmentation we are using
the method proposed by Dodgas et al. [7]. The method
works by using a combination of thresholding operations,
to segment the soft-tissue from the bone, and mathemat-
ical morphology to close the auditorial channels and the
nasal cavity. Performing a hole filling, leads to the scalp
mask.

Brain-segmentation For the brain segmentation, we fol-
low the method proposed by Géraud et al [8,16]. As for
the scalp-segmentation, the method works by a combina-
tion of thresholding and mathematical morphology oper-
ation. Morpholgy is used to separate the brain from the
surrounding structures. Selecting the largest component
yields the final brain segmentation.

Pre-segmentation results The result from the brain and
scalp segmentation, as well as the resulting mask for the
bony parts, are shown in figure 3. It can be seen that the
structure of the skull is roughly approximated by this
method. However, the pre-segmentation fails at several
places. For example in the area around the sinuses, thin
bones and air are located side by side. The algorithm
fails to distinguish them, as air and bones give almost
the same signal. Also, CSF cannot be distinguished from
bone by this simple method, as the intensity value of CSF
in a T1 weighted image lies close to the one of bone. A

(a) (b)

Fig. 3 (a) shows a 3D contour of the pre-segmentation re-
sult. (b) While the outline of the skull is roughly correct,
there are many places where the pre-segmentation (indicated
by the white line) is wrong. The ellipses mark these wrong
segmentation results. The green ellipses show areas where
air is classified as bone, the yellow show the same for bone-
marrow and the red ellipses for CSF.

different problem occurs with the bone marrow, which
gives a distinct signal from bone and is therefore not
excluded in the thresholding step.

4 Fitting

As discussed in section 2, the main assumption of our sta-
tistical model is, that given a large enough number n of
examples, all shapes of the same class can be obtained by
taking linear combinations of the example shapes. The
shapes are most conveniently represented as linear com-
binations of the principal components u (cf. section 2):

s = µ+
n∑
i=1

αiui.

Recall that the probability of observing s depends solely
on the size of ‖D2−1

α‖2. These properties leads natu-
rally to an approach for improving the result from the
pre-segmentation step: We try to find a linear combina-
tion of the examples, such that the shape matches the
one given from the pre-segmentation step well, but dis-
courages unlikely combinations by penalizing large α.

We proceed by stating this idea more formally. Let
Ĩ : Ω ⊂ R3 → {0, 1} be the resulting binary image from
the pre-segmentation step and Γ̃ ⊂ R3 be the surface
that induces the partition in Ĩ. We define the distance
image as

I(x) =


dist(x, Γ̃ ) x ∈ outside(Γ̃ )
0 x ∈ Γ̃
−dist(x, Γ̃ ) x ∈ inside(Γ̃ ).

(9)

Finding a likely shape that fits the partition boundary
of Ĩ amounts to finding transformation- and model pa-
rameters, such that the resulting surface comes to lie on
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the zero-level set of I. This is satisfied by the solution of
the optimization problem

min
s,t,R,α

N∑
i=1

wiI(sR[δi(µ+
n∑
j=1

αjuj)] + t)2 + λ‖D2−1
α‖2

(10)

where s ∈ R is a scaling factor, t ∈ R3 a translation,
R ∈ R3×3 a rotation matrix and λ a weighting coefficient.
The function δi(x) : R3N → R3 extracts the coordinates
belonging to the i-th vertex from the shape vector. Fi-
nally, wi ∈ R is a weight for point i. For the current dis-
cussion, we just let all wi = 1. Note that the first term is
zero, if and only if the shape defined by the optimization
parameters lies exactly on the zero-level set that defines
the partition boundary Γ̃ . The second term in (10) serves
as a regularizer and penalizes unlikely shapes. The prob-
lem (10) can be minimized by using any gradient based
optimization scheme. Unfortunately, the dependence on
I makes it highly non-convex and we are likely to get
stuck in a local minimum.

Multi-resolution In image registration, a common tech-
nique to escape local minima and, at the same time to
speed up the optimization procedure, is to use a multi-
resolution scheme. We show how the same idea can be
adapted for fitting a statistical model to an image. In
a first step, we build an image pyramid of the distance
image I. Let I(0) = I be the original image. The image
at level l is obtained by a convolution with a Gaussian
kernel G(σ) of variance 1:

I(l) = I(l−1) ? G(1).

This results in smoothed version of the image and, conse-
quently, in a smoother objective function (10) with fewer
local minima. Additionally, the resolution of the l-th im-
age can be reduced by the factor 2l in each dimension,
which speeds up the optimization procedure consider-
ably. Note however, that this simple approach does not
work, as the zero-level set in the the images Ii, i > 0,
does not represent the original surface anymore and we
can not expect to find a good fit of the statistical model.
Therefore, we need to apply the same smoothing to the
reference surface Γ0. We form the distance image of Γ0

and create the image pyramid, as described above. Us-
ing a contour extraction algorithm, such as for example
marching cube [14], we extract the zero level set to obtain
the reference surface Γ (l)

0 for level l. Figure 4 shows the
four levels of the reference surfaces for our skull-model.
Note, that only the most dominant features of the skulls
are still represented in the surfaces. Repeating the pro-
cedure described in section 2 with Γ

(l)
0 as the reference

surface, we build a separate statistical model for each
level.

As we built the statistical model separately for every
resolution level, the PCA components may be different

Fig. 4 The first for resolution levels of the reference skull. In
the last resolution (right) the details are smoothed out and
only dominant areas are still present in the surface.

Algorithm 1: The fitting algorithm

Input: Number-of-levels L
Reference-Mesh Γ0

Model (µ(l), U (l), V (l), D(l)), l ∈ {0, . . . , L}
Distance-Image I(l), l ∈ {0, . . . , L}

Output: (s,R, t, α)

(s(L+1), R(L+1), t(L+1), α(L+1)) := (1, I, 03, 0n)1

D(L+1) = V (L+1) := I2

foreach l ∈ [L, . . . , 0] do3

α := D(l+1)V T (l+1)
V (l)D(l)−1α(l+1).4

SetInitialParameters (s(l+1), R(l+1), t(l+1), α)5

(s(l), R(l),t(l), α(l)) :=

min

NX
i=1

wiI
(l)(sR[δi(µ

(l) +

nX
j=1

αju
(l)
j )] + t)2

+ λ‖D(l)2−1
α‖2

return (s(0), R(0), t(0), α(0))6

and the coefficients α do not represent the same shape
anymore. We need to perform a change of basis from to
the new principal components. Let α(l) be the final PCA
coefficents vector obtained from optimizing (10) for level
l. Recall from section 2, equation (7) and (8) the re-
lation between the PCA-coefficients α and the example-
coefficients β. This relationship allows us to compute the
coefficients for the next level from the previous solution.
First, we compute from the PCA-coefficients the corre-
sponding coefficients β that determine the linear combi-
nation of the examples x1, . . . , xn

β(l) = V (l)D−1(l)α(l).

Then we use the same linear combination of the exam-
ples given by β(l) as the initial solution for the next level.
For this, we have to represent these coefficients in terms
of the PCA-components U (l−1) for level l− 1. The coef-
ficients for level l − 1 become

α(l−1) = D(l−1)V T
(l−1)

β(l) = D(l−1)V T
(l−1)

V (l)D−1(l)α(l).

We proceed iteratively until we reach the finest resolu-
tion. Algorithm 1 shows the detailed steps of the multi-
resolution fitting.
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Algorithm 2: Multi-part fitting algorithm

Input: Number of parts P
Reference-Mesh Γ0

Model (µ(p), U (p), V (p), D(p)), p ∈ {0, . . . , P}
Distance-Image I

Output: (s(p), R(p), t(p), α(p)), p ∈ {0, . . . , P}
(s(0), R(0), t(0), α(0)) = Fit(Γ0)1

foreach part Γ
(p)
0 ⊂ Γ0 do2

α := D(p)V T (p)
V (0)D(0)−1

α(0)
3

SetInitialParameters (s(0), R(0), t(0), α)4

(s(p), R(p), t(p), α(p)) = Fit (Γ
(p)
0 )5

return (s(p), R(p), t(p), α(p)), p ∈ {0, . . . , P}6

Multi-parts fitting When working with real data, espe-
cially with such complex structures as the skull, ob-
taining a large database of normal examples is difficult.
Hence, our central assumption that any new skull we
see can be accurately represented by our model is often
violated. We therefore try to increase the flexibility of
the model for the case when we are given only a small
number of examples. This can be done by segmenting
the skull into different parts and fit each part separately.
A natural segmentation for the skull would, for instance,
be to separate the mandible and the cranium. This sepa-
ration offers several advantages. Given the same number
of examples, it provides a greater flexibility, as we can
obtain different optimal parameters for each part. Fur-
thermore, as the structures to be fitted are simpler, fewer
examples are needed to capture all the variation of this
structure. Lastly, working with separate models allows us
to use a different number of examples for each structure.

Our approach is as follows: In a first step, we fit a
statistical model of the whole skull. This yields a good
approximation of the overall structure and localizes the
different parts. Using this result as an initial solution,
we fit a separate statistical model for each part into the
image. From the technical point of view, this hierarchical
fitting does not pose additional challenges. We can em-
ploy the same method for changing among the different
bases as described for the multi-resolution approach.2
Algorithm 2 illustrates this procedure in more detail.

Discretization of the reference surface The fitting method
(10) described above depends strongly on the discretiza-
tion of the reference surface used to build the statistical
model. The cost-function (10) is only evaluated at a dis-
crete number of points on the surface. It is clear, that
areas that are more densely sampled will have a larger
influence on the overall error. The algorithm will strive
to minimize the distance at these points, at the expense
of a larger error at more sparsely sampled region. This

2 For this procedure to work, we need to make sure that
the example are processed in the same order. In case that
the parts-model contains more basis vectors than the global
model, we just set the corresponding coefficients to zero.

Table 1 Parameter settings used in the experiments

Parameter Value
Number of Levels 5
Number of Iterations 2000
Regularization parameter λ 0.1
Number of skulls in models 17

dependence on the discretization is almost always unde-
sirably. Therefore, we represent the reference surface as a
triangle mesh and weight the points according to the size
of its neighboorhood. More precisely, at the vertex vi, we
compute the area of the triangles that vi belongs to. The
weight wi in (10) is then set proportional to this area.
This greatly reduces the dependence on the sampling.

5 Results

In this section we present results that show the feasibility
and benefits of our model based approach. In particular,
we show that the skull structure is generally well ap-
proximated and good results are achieved even in areas
where methods, which are based only on the intensity-
values, must fail. For several reasons, we do not perform
a comparison with other segmentation methods or try to
give precise quantitative results at this stage. First, the
skull model we are using at the moment is built from
only 17 data-sets, some of which are of rather poor qual-
ity. Hence, any precise evaluation would show the limi-
tations of the model rather than those of the presented
method. Furthermore, at the current stage, where only
small first steps towards skull-segmentation from MRI-
data have been performed, we feel that a comparison of
the different algorithm would not give much more in-
sight. However, a quantitative evaluation and compari-
son is planned as future work.

Experimental setup We implemented our method using
the Insight Registration and Segmentation Toolkit (itk)
[9]. Optimizing the cost function (10) is performed using
ITK’s RegularStepGradientDescentOptimizer. The rota-
tion is represented as a versor rotation. Before the skulls
are fitted, they are roughly aligned with the reference
surface using landmark based rigid registration [20]. Our
statistical model has been built from 16 segmented skulls
from diverse sources, out of which 7 stem from the Bosma
collection [2]. The parameter settings used for all our ex-
periments is given in table 1.

Experiments and Results In the first experiment, we tested
if the multi-part fitting leads to improvements over the
fitting result obtained by performing only a fit of the
whole skull. For this, we segmented the skull into two
parts, namely the mandible and the cranium. Figure 5
shows how fitting the parts separately increases the flex-
ibility of the model. While for the cranium the improve-
ment is small (the difference is mainly in the area of the
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(a) (b)

(c)

Fig. 5 The multi-part fitting (c) clearly improves the result
compared to the global fitting (b). At the places where the
pre-segmentation (a) fails, the multi-parts fitting (c) is able
to segment the structures correctly.

sinuses), the result for the mandible is clearly much bet-
ter. This is due to the fact that the accumulated error for
the cranium dominates the cost-function and hence the
algorithm strives to decrease the error for the cranium.
Due to the limited flexibility of the model, this comes
at the cost of a larger error for the mandible. Abolish-
ing this coupling leads to a better fit for both parts. It
can also be clearly seen in figure 5 that at the places
where the pre-segmentation algorithm fails, good results
can be achieved by using model-based fitting. The miss-
ing information in the MR image is compensated by the
prior knowledge about the skull structure encoded in the
model.

Figure 5 shows the fitting result in six slices through
a different MRI volume. Here as well, the model approx-
imates the shape of the skull generally well. However,
it can also be seen that in some places, for instance in
the area of the frontal sinuses, the fitting deviates from
the true skull contour. We attribute this to the limited
number of examples in the model. To achieve a better
fit, the model has to be enlarged significantly, or more

Fig. 6 Slices through an MRI of the skull, showing the fitting
result for the cranium (red) and mandible (orange).

independent parts would have to be considered. Another
problem that becomes apparent in Figure 5 is that only
structures that are in the model can be segmented. As
the model has only 28 teeth, the 32 teeth in the image
can never be correctly fitted. This suggests to extend the
method, such that different statistical models can be cho-
sen for each part, depending on the patient’s anatomy.

All our experiments have been performed using the
multi-resolution scheme with 5 resolution levels. Our tests
showed that for this particular segmentation task, simi-
lar results could be achieved using only a single resolu-
tion level. The multi-resolution scheme led, however, to
a speedup of factor 2 to 5, depending on the parameter
settings. The reason that the single resolution method
does perform surprisingly well, lies on the one hand in
the use of the distance image, which yields consistent
gradient directions, and on the other hand the relatively
good pre-alignment of the model. Other tests that we
performed on CT images directly, confirmed that the
multi-resolution does not only lead to faster convergence,
but is a requirement for this fitting procedure to be more
generally applicable.
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6 Discussion

In this paper we have presented an approach for the
segmentation of the human skull by means of fitting a
statistical shape model to a pre-segmented MR image
of the head. To efficiently solve the resulting optimiza-
tion problem, we describe a multi-resolution approach
to model fitting. Our method allows only solution that
lie in the span of the statistical skull-models, i.e. linear
combinations of the examples used to build the model.
This strong restriction of the solution space allows the
method to yield meaningful segmentation results, even in
places where the bone cannot be distinguished from the
surrounding tissue in the image. At the same time, it is
this strong bias that limits the flexibility of the model. It
would require a large number of example skulls in order
to span the space of all normal skull shapes. We therefore
proposed the use of a hierarchy of statistical models to
increase the flexibility of the model, for the same number
of examples. Our experiments showed that this greatly
improves the accuracy of the segmentation.

The statistical shape model has been built from ex-
ample skulls that were semi-automatically segmented from
CT-Data. Hence our approach can be seen as a means
of transferring shape information from CT-data to MR
images. At some point this might reduce the need for
acquiring a separate CT image of the patient and make
it possible to obtain all information that is needed for
the medical application from a single MR image.

The full potential of the hierarchical model has not
been exploited in this paper. The fitting procedure de-
scribed here is by no means limited to skull segmenta-
tion, but can be applied for any segmentation task, where
a good enough pre-segmentation can be performed. A
direct application is for the segmentation of bone from
CT images, where the pre-segmentation can easily be
performed by a simple thresholding operation. More-
over, one could consider more complex hierarchies and
use separate model for every part. For example, a sepa-
rate statistical model for each tooth could be built. Com-
bined with an intelligent algorithm to automatically de-
tect missing parts in data (using a scheme like the one
described by Toews et al. [19]) it would be possible to
fit images where no one-to-one correspondence to the
reference-parts exits. The development of such a method,
together with a more thorough evaluation of the segmen-
tation algorithm, will be subject of future work.
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