
 

Navigating in a Shape Space of Registered Models 
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Abstract— New product development involves people with different backgrounds.  Designers, engineers, and consumers all 
have different design criteria, and these criteria interact.  Early concepts evolve in this kind of collaborative context, and there is a 
need for dynamic visualization of the interaction between design shape and other shape-related design criteria.  In this paper, a 
Morphable Model is defined from simplified representations of suitably chosen real cars, providing a continuous shape space to 
navigate, manipulate and visualize.  Physical properties and consumer-provided scores for the real cars (such as ‘weight’ and 
‘sportiness’) are estimated for new designs across the shape space.  This coupling allows one to manipulate the shape directly 
while reviewing the impact on estimated criteria, or conversely, to manipulate the criterial values of the current design to produce 
a new shape with more desirable attributes.  

Index Terms—Morphable model, shape space, barycentric coordinates, design space.

 

1 INTRODUCTION 
This paper describes techniques for navigating in a shape-space of 
registered models created from examples.  Models are defined as 
vectors of geometric features with which to draw the model, and 
other associated model attributes.  A set of registered models are all 
described by the same features in the same order, and only differ by 
the feature values.  Our examples are cars, but the navigation 
techniques described are more widely applicable.  They enable 
dynamic visual exploration of the shape-space, guided by estimates 
of physical properties for new shapes, and predictions for 
appearance-based semantic labels (e.g. ‘sporty’). 

In any new product development effort, there is a planning phase 
in which coarse goals and criteria must first be rationalized and 
balanced.  We do not prejudge the relative importance of any 
criteria—aesthetic, engineering, or market-based—and therefore 
emphasize exploration and visualization rather than optimization.  
We believe many ‘requirements’ are negotiable, and trade-offs will 
be made if alternatives are visually evident.  In the following we 
develop integrated techniques and associated GUIs to support these 
activities which we think can greatly aid in design rationalization:  
• Exploration of the interplay of criteria with each other and 

resulting design shapes. 
• Navigation toward suitable regions of shape space. 
• Direct adjustment of design geometry. 
• Restriction to design subspaces by constraints. 

The ability to create representative concepts simply and rapidly at 
a very early stage—in meetings, or with customers—has significant 
potential.  It should be noted, however, that the described research is 
not a fielded application, nor are the GUIs described currently under 
usability testing. 

1.1 Related Work 
This effort builds on the original work on Morphable Models [1][2], 
and the performance-based methods for tailoring human face models 
during synthesis [3].  Barycentric coordinates [4], principal 

 

 
components [5], and eigensystems [6] are standard tools in this 
literature. We augment these with additional mathematical tools for 
constraining and guiding navigation through the infinite variations of 
the design space.  Specifically, by integrating linear constraints and 
linear regression into this mix, we make it easier to support 
engineering and consumer-based criteria as functions of shape. 

These techniques depend upon registered models in contrast with 
more general shape similarity measures [7][8] based on aggregated 
properties used in shape retrieval. 

The “bottom-up” design-from-examples approach also contrasts 
with, but may complement, “top-down” design systems using shape 
grammars [9]. The latter embeds knowledge about appropriate 
feature combinations in generative rules; the former derives it from 
statistics of well-chosen examples.  Both must decide which features 
are relevant, and a hybrid solution may ultimately be most powerful. 

The change from ‘faces’ to ‘cars’ may seem like a small step, but 
isn't.  Registration algorithms for faces [3], and human bodies [10] 
do not adapt well to 3D car models—whose surfaces are critically 
defined by a few major flow curves.  Prior registration work with car 
surfaces [11] produced results not smooth enough for our purposes, 
and we hypothesize the lack of this constraint is one reason. 
Similarly, point-to-point correspondence editors [12] do not support 
these specialized needs.  Most likely, car surface meshes need to be 
derived from these critical flow curves [13] prior to registration, or 
the curves themselves used to define the Morphable Model with the 
surfaces generated from them secondarily [14].  We have not solved 
the automatic registration problem either, but utilize flow curves in 
our representation and hand-fitting of models to templates in order to 
produce usable results for testing (see Section 2).   

1.2 Organization of the Paper 
Section 2 provides background on the representations used (both 2D 
and 3D examples).  Section 3 reviews and integrates the basic 
mathematical steps for visually exploring the design space guided by 
different kinds of criteria. In Section 3.1 barycentric coordinates are 
used to browse through the variety of shapes, using GUIs based on 
the simplex. The GUI also acts as a color-coded parameter map of 
the shape region indicating directions to increase, decrease, or 
maintain the value of a selected scalar criterion.  Section 3.2 follows 
with a recursive weighted least squares method that enables direct 
manipulation of shape features coupled with a parameter map 
showing how deviations from the current feature value affect any 
other selected criterion.  Section 3.3 transforms the linear constraint 
system to principal components of the shape-space, making 
computations more tractable in the lower dimensional space.  The 
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relation of barycentric coordinates to PC space is established to 
integrate these efforts. 

In Section 3.4 linear regression is added as another way to relate 
attributes to shape variables. Physical attributes of vehicles and 
consumer feedback on shapes may not be obviously related to the 
shape geometry, but may indeed show a relation through linear 
regression on the basis vehicles, or more generally on the shape 
principal components.  Any established relationship can then be used 
as a linear constraint or color-coded in a parameter map to guide 
navigation.  In addition, regression on shape PCs enables prediction 
of attributes of new shapes not derivable from the basis set of 
exemplar shapes, and opens the possibility for explanation of these 
attributes in terms of shape features. 

In Section 4 a simple scenario ties these techniques (and GUIs) 
together.  In Section 5 a number of open questions are discussed and 
Section 6 summarizes and concludes. 

2 REPRESENTATION 
In order to explore uses of morphable car models, we have 

created a succession of 2D and 3D hand-registered databases fit to 
standardized templates (Figure 1).  The figures throughout the paper 
will use one or another representation, but the techniques are 
applicable to any of them.  The old curve template (top) is used for 
models in Figures 7 and 8.  The newer templates contain separate 
meshes for the body, roof, and wheel openings among others, since 
these sub-surfaces can move relative to one another by large amounts 
across a variety of cars—which would distort a single mesh.  The 
meshes represent "base" surfaces—theoretical shapes defined 
primarily by a few curves.  The "fillet" curves for the roof and body 
3D templates are shown in yellow.  They are instrumental by 
themselves in defining the size, proportions, and shape of the roof 
and body segments, in the same sense that a sketch artist defines a 
concept with a few strokes.  They are responsible for controlling the 
major highlights in the vehicle appearance, which can be seen for 4 
of the fitted 3D vehicles in Figure 11.  The rest of the template mesh 
is designed around these curves with higher mesh density in areas 
that vary substantially from car to car.   

Given the fully-detailed target vehicle meshes, the target's 
characteristic curves must be identified and matched to the template 
curves.  The theoretical target "base" surfaces must be artfully built, 
passing smoothly through extraneous geometric detail, with the 
template vertices distributed to capture the shape, above, below, or 
on the target surfaces. 

The difficulties inherent in dealing with segmentation of the 
target into base shapes, identifying and ignoring extraneous detail, 
and generalizing the target shapes to an ideal partially defined by 
some existing curves is beyond the ability of current automatic 
registration algorithms. 

2.1 Shape-Space Definition 
A shape-space is defined by n+1 exemplars—models chosen for 

some particular qualities.  Each is represented by a d-dimensional 
vector x — the defining geometric features for the vehicles—which 
together with some fixed topological information used in drawing, 
form the template.  Typically, 1+>> nd . An exemplar is named 
(e.g. 0x ), identifying it as a particular instance of x  with particular 
feature values. A montage of thirty 2D exemplars is shown in Figure 
11.  A subscript ( ix ), or no subscript, will represent any design; a 
superscript plus ( + ) indicates an updated design. 

The exemplars are grouped as columns in a matrix.  The 
deviation matrix additionally has the average ( x ) of the column 
vectors subtracted. 
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Fig. 1. Versions of 2D and 3D templates. 

 
Designs ( x ) are affine combinations of the exemplars, with the 
affine constraint on the components of the blending vector t  : 
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3 NAVIGATION 
The following sections develop techniques for navigation in the 
design space while simultaneously viewing and manipulating the 
design shape and criteria of interest.   

For navigation, it is conceptually convenient to view any created 
design to be the starting point for the next evaluation in a sequence 
by adding combinations of the (original) shape deviations to it: 
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All designs, including x , lie in the same hyperplane.  The 
deviation vectors span the hyperplane, so any linear combination of 
them will stay in the subspace.  The additional restriction on t in (2) 
is only necessary for equality with the left-hand side of the equation.  
The vector t  in (3) is unrestricted, but can be adjusted for different 
purposes without affecting the result.  Since the sum of deviations 
from the mean is zero, 

)(~~ 1D1D0 α⋅=⋅=  (4) 

any vector with the same value in each component can be added to 
t and is mapped to 0 by (3).  Two such adjustments are useful.  The 
vector components can be shifted by the minimum component value 
to a new minimum value of zero—useful for setting sliders that have 
minimum zero values: 



  
1tt mintsliders −= . (5) 

The other adjustment sets t so its components sum to one again: 
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Equation (3) can be rewritten, if desired, as a single step adjustment 
to the mean, or an affine combination of the exemplars as before: 
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3.1 Barycentric Coordinates 
In this section, the vector t in (2) will be manipulated through a user 
interface, enabling exploration of the design space—calculation of a 
multilinear estimate of any vehicle’s properties and visualization of 
the resultant interpolated shape.   

The most direct implementation to specify t uses n+1 sliders 
ranging from zero to one—with one slider for each exemplar.  To 
save space, these were arranged in a circle, as shown on the left in 
Figure 4.  This type of interface is inconvenient, but is a way to fully 
specify any vehicle in the space.   

If n+1 points are affinely independent they form the vertices of an 
n-simplex—the convex hull of the points—embedded in a 
hyperplane in nℜ  or greater dimension [15].  The 2-simplex is a 
triangle, embedded in the plane containing its three vertices.  Any 
other point in the hyperplane can be referred to the simplex as an 
affine combination of its vertices. In (2), t is the barycentric 
coordinate of the point x  with respect to the n-simplex defined by 
the points (columns) of D .  If any components of t  are negative or 
greater than one the point is outside the simplex but still in the 
containing hyperplane.   

Barycentric coordinates are ‘coordinate frame free’; given a 
particular point p , each barycentric coordinate for it is calculated by 
a function per vertex of the simplex [4].  There is a mapping for any 
point p  of one n-simplex to its corresponding point in any other n-
simplex through the simplex vertices (columns of V and D ) and p ’s 
barycentric coordinate: 
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The important property of barycentric coordinates is their well-
known ability to interpolate vectors on the simplex vertices smoothly 
over the interior—commonly used to interpolate colors on triangle 
vertices across interior pixels or to interpolate physical properties 
across finite elements.  The interpolated scalar property at a point is 
computed using the barycentric coordinate of that point, and a vector 
a  of attribute values (one value per simplex vertex) 
  

( ) pp t1a ⋅−+=+ *aaa . (9) 

 

 
Fig. 2. “Mousing around” in a parameter value map. 

Deviations from the attribute mean are blended and added to the 
attribute value a for the current design.  It follows from (8) that if 
the same attributes are associated with the vertices of both simplexes, 
the barycentric coordinate of a point in one can be used to estimate 
the attribute at the corresponding point in the other.  With that 
rationale, the rest of the section will describe the use of simplex-
related GUIs for partially specifying t . 

Generalized barycentric coordinates [4][16] extend barycentric 
coordinate calculations from the 2-simplex to planar n-sided convex 
polygons.  We use it in a 2D GUI for blending three (or n) vectors 
(Figure 2).  The barycentric coordinate for the cursor point inside the 
figure is calculated [4] and blends the deviation shape vectors 
assigned to the vertices by (3). The result is added to the current 
design shape and the vehicle is then drawn.  A cursor point on a 
vertex regenerates the associated exemplar, or on an edge 
interpolates two exemplars, assuming the deviations are being added 
to the mean design. A cursor point in the middle—the barycenter for 
a standard simplex—averages the deviations (which equals 0).  
Otherwise an interior point blends all deviations—those associated 
with nearby vertices have the most weight.  Any other scalar 
property of the models (e.g., ‘wheelbase’) can be interpolated across 
the interior of the polygon, and its value color-coded (through five 
20% ranges, from minimum to maximum values in the Figure). 

While a GUI could be made using a 3-simplex (tetrahedron) and 
a 3D cursor, this approach cannot be directly applied in higher 
dimensions.  However, other than the triangle, the polygon is not a 
simplex, and only a small fraction of the values of t available in the 
n-simplex can be generated. For example, it is not possible for 
widely separated vertices to have strong affects on the blended 
result; so the ordering of properties on the vertices is important. In 
Figure 3, exemplars were sorted on wheelbase, and associated with 
the n-gon vertices in a zigzag pattern across the n-gon, from bottom 
to top, to create low and high clusters on opposite poles.  Deviations 
were blended for long (top) and short (bottom) wheelbase and added 
to the average car shape (middle). Note that the average car 
“character” is generally maintained.  Whichever solution is being 
added to the deviations will appear when the cursor is in the middle 
of the parameter map—in that case all the deviations are being 
weighted equally and sum to zero. 

  If the attributes distributed over the basis vehicles have 
significant outliers, linear interpolation may not be sufficient. 
Appropriateness must be determined in any case. 

 

 
Fig. 3. Three wheelbase variations on the average 2D car (middle). 



 

 
Fig. 4. Changing the wheelbase updates other parameter maps.  
 
Figure 4 shows a typical arrangement with the design window, 
sliders, and multiple parameters maps.  One maximized slider is an 
indication that the current design is an exemplar (X22 in Figure 11), 
and not something else.  The inset shows how the parameter map for 
‘curb weight’ changes as the cursor is moved within the ‘wheelbase’ 
n-gon from A to B to C while holding down a mouse button.  After 
the first change is made (A) the estimated curb weight for the new 
design is shown, and the color map indicates it is in the 60%-80% of 
maximum (red) range. While creating a smaller wheelbase (B), all 
other parameter maps continuously change to center on the evolving 
current design—and estimated curb weight has decreased.  It 
increases again as the wheelbase is increased (C), so the two 
variables are positively correlated.  The user could have kept the 
wheelbase nearly constant instead by moving the cursor along a 
color contour while observing the other parameters, and the changing 
design shape.  The whole subspace of vehicles with a constant 
wheelbase, however, is not reachable with this one GUI alone, which 
can access only a portion of the n-simplex and its interior. The 
shapes reached will be influenced strongly by the current design.  To 
get to other portions of the space, steps involving other GUIs need to 
be performed. 

3.2 Recursive Weighted Least-Squares 
We also need to manipulate the geometric features of the current 
design directly.  The design can be constrained by a linear relation 
H (a constant matrix) on the design (for example, geometric point 
offsets): 
  

Hxz = . (10) 

Different H functions can be pre-determined and stored.  For any 
one of them, the current design value for z can simply be calculated 
and displayed.  If we provide a target (constraint) z value that is 
different, we want the overall design to adjust, but we also allow a 
‘tolerance’ for the target.   How much the design bends to the 
constraint, and how much the constraint accommodates the current 
design, are handled by a weighted average described below.  

This form is usually seen in a probabilistic filter context [17].  
The initial design point is the mean.  The covariance matrices C  and 
R  act as (inverse) weight matrices for the current design and the 
constraint respectively—the larger the variance, the smaller the 

weight.  C  is initially approximated by the sample covariance of the 
exemplar data and R  is user-adjustable. Any common scale factor 
in C  and R  cancels out of (11) and can be divided out of the final 
result (12).  So unless a probability is needed, (13) will be used for 
convenience.  It should be clear that in a sequence H , z , and R  are 
potentially different each step, and that the updated +x  becomes x in 
the next step.  To enable navigating the design space freely without 
limiting the space to smaller and smaller subspaces, equation (11) 
will be utilized without updating C each time. 
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In Figure 5 (right side) H  is a 3xd matrix of zeros with a single 

‘1’ in each row; it selects a particular 3D point from the design. 
Dragging that point with the 3D cursor to a new position ( z ) creates 
a position difference used in (11) to adjust the entire model, finding 
the solution closest to the starting design that satisfies the constraint 
within a tolerance.  In a probabilistic context, it is the minimum 
variance solution for Gaussian variables [18]. 

It is considerably easier to use a 2D cursor and manipulate a 2D 
section—e.g., the mid-plane—extracted from the 3D model.  In 
Figure 5 (left side), dragging a point on the section updates the 
section dynamically (as a morphable sub-model) in its window, and 
the 3D morphable model updates simultaneously as well. 

A range of deviated positions of any particular 2D point in the 
current design can be encoded in a grid, and the minimum distance 
design solutions (11) calculated with the same starting design value 
for each grid point deviation.  Any other scalar property or linear 
function of the design variables can then be calculated per grid point 
solution, and the grid point assigned a color based on its value.  In 
Figure 6, the red curve in the top section is being manipulated by one 
of its endpoints, and two instances of the design and the outline 
difference is shown.  Associated with the two designs are two 
parameter maps color-coded through five 20% ranges, from 
minimum to maximum values for the parameter across the exemplar 
set.  On top of that is a scatter plot of the deviations from the mean 
(center grid point) of the designated “drag” point for the 30 
exemplars.  The left-most grid shows a cursor square at the initial 
“drag” point value for the design; in the center image the cursor has 
moved to the left, either from dragging the 2D point in the model 
window, or moving the cursor on the parameter map.  In either case, 
it is clear how to move the point to increase, decrease, or maintain 
the current parameter value while viewing the resulting and 
transitional shapes.  

A map for the deviation of any two parameters from the current 
design values can be similar constructed by combining the two scalar 
linear functions. 

 
 

 
Fig. 5. Dragging a selected 2D or 3D point to reshape the 3D car. 



 
Fig. 6. Dragging a 2D point guided by a parameter value map.  

Applying Equation 11 without applying Equation 12 allows the 
user to jump around in the whole design space freely; but previous 
constraints are not enforced.  That’s plausible while browsing, to 
understand the “landscape” and shape interactions with various 
criteria shown in parameter maps.  Equation 12 is applied to commit 
to the constraint.  In Figure 7 a vehicle wheelbase is extended and 
locked at a particular value.  The rest of the vehicle reshapes when a 
second point is subsequently moved (up, and then down) but the 
wheelbase is fixed (within a specified tolerance).  The second point 
can be locked down, and so on.  Significantly, the updated 
covariance matrix ‘remembers’ these lost degrees of freedom and 
implements locking in new vehicle shape calculations (12). 

3.3 Principal Components 
C (Equation 12) can be large, even though it is sparse. Transforming 
the problem into its principal components avoids creation and use of 
C altogether, reducing the dimensionality of the problem space and 
enhancing real-time performance. PCs are a set of uncorrelated 
parameters that may be used to generalize the idea of shape beyond 
the basis set, and allow predictions and explanations of properties for 
other vehicles. In this section the recursive weighted least squares 
formulae are transformed into the PC space, allowing direct 
manipulation of meaningful design features economically. 
   Singular Value Decomposition is applied in (14) to rewrite the 
exemplar deviation matrix into a product of matrices: U is column 
orthogonal; V is square and orthogonal; and Σ is a diagonal matrix.   

  
Fig. 7. Locking—using linear constraints to limit the design space. 
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Since d>n+1, and D~ is composed of mean-deviation column vectors, 
the rank of D~  is at most n.  At least one Singular Value will appear 
as a zero diagonal element in Σ .  Using (14), the scaled covariance 
matrix in (13) becomes 
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The columns of U are the eigenvectors of (13) and the diagonal 
elements of Λ are the corresponding eigenvalues.  In Principal 
Component Analysis, the diagonal elements of Λ  (and Σ ) are 
sorted in descending order—placing any zeros in the last diagonal 
elements.  The columns of U and V  are sorted correspondingly. 

Jolliffe [5] defines the (centered) principal components using the 
sorted eigenvectors as 

xUu ~t≡  (16) 

which, using (14) gives 
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Finally, using the definition 
  

HUG ≡  (18) 

we get the recursive forms of (11) and (12) in the lower-dimensional 
PC space, and can move back and forth to feature space where the 
variables have more obvious meanings for user manipulation. 
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Note that +Λ and +Σ  are no longer diagonal. 
Barycentric coordinates can now be tied to PC space by solving  
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using (14) and (16).  Note that locking (use of equation 20) restricts 
subsequent new designs +u  to a subspace, which restricts t  in turn 
via (21) using the un-updated Σ  from (14).  Corresponding cursor 
points in the n-gon for these restricted t  vectors are computed as 
before (see [4]).  Alternatively, an unrestricted t  vector can be 
computed from the cursor position in the n-gon [4], and used in (17) 
with updated +Σ  to generate new designs in the restricted subspace. 

 
 
 

 

3.4 Linear Regression 
In [3], a subjective score (like facial ‘boniness’) for each exemplar 
was used to calculate a ‘boniness’ shape deviation vector that could 
be scaled and added to another face model for effect: 
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with ia the elements of an attribute vector (the scores), and s the 
scale factor. The technique associates a semantic label with a 
“direction” in shape-space.  The attribute scores can be garnered 
from experts, or drawn from the population.  In Figure 8, we self-
scored a number of vehicles (not the same set as Figure 11) for the 
word ‘sporty’.  Not surprisingly, cars attain characteristics of sports 
car—yet the transitions are interesting. 

Alternatively, (23) uses scores to determine a linear function on 
the principal components of the shape-space.  For scores on all the 
exemplars, iet =  trivially gives back the already-supplied attribute 
for the designated exemplar, or otherwise interpolates the values.  
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Substituting the parenthetical term—which is equal to the Identity 
matrix—and regrouping, transforms the identify function into a 
linear function with coefficients β on the standardized PCs.  Since 
PCs are orthogonal, eliminating small PCs to produce a linear 
relation with only a few important parameters is simple:  zero out 
their coefficients. 

Figure 9 shows a linear fit of six of the largest PCs from a 2D 
sample set of 30 cars to their actual ‘weight’, with approximately 
90% of the weight variance 'explained' by the linear model.  The 
largest PCs are related to size and proportion, but it is still not 
obvious that a 2D outline should be a good first-order predictor for 
real vehicle mass.  Nevertheless, the example is only illustrative of 
the potential—not intended to be regarded as a validated result. 

 

 
Fig.8. Adding increasing amounts of ‘sporty’ to an initial vehicle. 

 
Fig. 9. Real and fit curb weight for thirty cars from six 2D shape PCs 



 

4 USAGE SCENARIO 
An example of use is shown in Figure 10.  An initial design has 

already been created (top frame), as indicated by the pattern in the 
sliders below it.  The depicted vehicle was initially exemplar X4 
(from Figure 11) and has had its wheelbase greatly reduced using the 
n-gon labelled “wheelbase”.  The curb weight was also reduced as a 
result.  The character of the original exemplar is still plainly evident. 

In the middle frame, the design has been further modified by 
dragging a point on the rear glass of the model (highlighted in red) in 
the “sporty” direction dictated by the “sporty” GUI.  The cursor 
(large white dot) in that GUI indicates the movement of the dragged 
point from middle to left (in the top frame to the middle frame), 
making the wheelbase smaller still.  The resulting design is shown in 
the bottom panel with the original X4 outline in red.  

5 DISCUSSION 
There are many questions that have not been addressed in this paper: 
linear vs. non-linear methods; the number of exemplars needed; 
whether to treat size and proportion information separately from 
shape; and how to handle “details”—those aspects of individual 
vehicles that are not amenable to capture through common feature 
vectors and summarization through statistics. 

 

 
Fig. 10. Two step modification of X4. 

 
We have been pleasantly surprised at how well linear models 

have worked—both in the 2D models sets, and in a small (8 model) 
set of 3D models.  As mentioned in the introduction, initial template 
definition and registration of models are difficult problems. We have 
iterated over a number of templates, and artfully hand-registered 
models to these templates, giving us good results.  One obvious 
place to test the validity of linear interpolation is shown in Figure 7.  
Each car was modelled with an occupant in design position (heel 
point, hip point), and the occupant was linearly interpolated with the 
vehicle.  The occupant was not a kinematic model—its limbs were 
just drawn between the repositioned joints (points).  One would 
expect that with too much shape variation the figure’s limbs would 
stretch, rather than rotate into position, and indeed this happens.  
Over a large range (from truck to low-slung sports car) this change 
was only a small proportion of limb length, amounting to a few 
millimeters—perfectly valid for illustration and discussion. 

Since the 2D template has been evolving, we have not been able 
to accumulate models without rework from stage to stage—limiting 
us at any particular stage to less than one hundred models at any time 
in the basis set.  Mixing vehicles across segment—trucks, SUVs, 
sedans—can produce very interesting cross-over results, but is going 
to take many vehicles to span the large shape variations.  For many 
practical purposes, it is more desirable to model within segment 
(Figure 11 has no SUVs or trucks in it).  The more homogenous the 
model set, the more likely it is that linear regression will work well. 
Projecting a new vehicle into the shape-space, and regenerating it 
does not produce a near-replica of the shape; more models will be 
needed in the set, but we can’t predict the number.  On the other 
hand, smaller model sets like the ones with which we are 
experimenting have been used to predict properties of new vehicles 
to first order, and their interpolations do produce an interesting 
variety of pleasing shapes. 

The exemplars have not been normalized to separate shape 
characteristics from the dominating influence of size and 
proportion—this will be a future investigation.  The first few PCs 
describe most of the set variance, since they represent the large 
variations in size and configuration (cab forward or rear).  With a 
sample of 30 2D cars, there are still 29 PCs (the maximum number) 
achieving numerical significance based on a common cut-off 
threshold—but their value after the first few is dubious.  However, if 
no PCs are eliminated, they by definition must reconstruct the 
exemplars, leading to some interesting cases where a “small” PC 
matters.  Even though an exemplar may be registered to the shape 
template, it can still contain an idiosyncratic sub-shape highly unique 
to it within the set.  In one instance, a unique bumper was 
“identified” with a small PC, in the sense that the PC value changed 
dramatically in the one vehicle only.  We were able to “graft” the 
bumper onto another car by substituting the unique PC value for this 
into the second vehicle’s PC description. 

To define a design template, or achieve model registration, we 
have to focus on common characteristics.  Two-door and four-door 
vehicles are both represented in Figure 11 by hinting at door 
placement with a single door cut.  Otherwise we would segregate 
these two types of vehicles—we don’t want doors partially 
emerging, or popping in and out of the design as a whole during 
morphing.   

However, some level of detail seems required to gain acceptance. 
It would be interesting to understand how effective (in terms of 
information content) simple line models are vs. more realistic 
models.  We have added pseudo-3D shading as a texture to the 2D 
models, controlled by the underlying mesh so that it reshapes with 
the vehicle. Shading information is not contained in the morphable 
model, and additional care needs to be taken for decisions based on 
appearance.  

 
 



 

 
 

 
Fig. 11. Montage of thirty 2D vehicles and four of the eight 3D vehicles fit to the templates

6 CONCLUSION 
Conceptual design involves many people with different backgrounds. 
Artists and designers, engineers, and consumers all have different 
criteria.  The techniques developed in the previous sections can be 
used to explore the interplay of these criteria with shape, and suggest 
ways to move the design in a positive direction.  Initial discussions 
with prospective users have generated many ideas in design, 
engineering, and marketing where an effective shape-space tool 
could be of use.  To make our results more effective, we need to 
build substantially larger databases to be able to capture more subtle 
variations; test and validate the linear prediction models vs. higher 
order models; and look into the effects of removing size and 
proportion information and treating it separately from shape.  
Finally, a good automatic 3D model registration algorithm would 
make large 3D databases possible, and 3D applications viable.   

REFERENCES 
[1] M. Jones, T. Poggio, “Hierarchical Morphable Models”, CVPR, pp. 

820-826, 1998. 
[2] M. Jones, T. Poggio, “Multidimensional Morphable Models”, 

Proceedings International Conference on Computer Vision, 1998. 
[3] V. Blanz, T. Vetter, “A Morphable Model for Synthesis of 3D Faces”, 

Proceedings SIGGRAPH, 1999.  
[4] J. Warren, S. Schaefer, A. Hirani, M. Desbrun, “Barycentric 

Coordinates for Convex Sets”, Technical Report, Rice University, 2004. 
[5] I. T. Jolliffe, Principal Component Analysis, New York, Springer-

Verlag, 1986. 
[6] M. Turk, A. Pentland, “Eigenfaces for Recognition”, Journal of 

Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991. 

[7] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. 
Rusinkiewics, D. Dobkin, “Modeling by Example”, Proceedings 
SIGGRAPH, 2004. 

[8] M. Kazhdan, T. Funkhouser, S. Rusinkiewics, “Shape Matching and 
Anisotropy”, Proceedings SIGGRAPH, 2004. 

[9] S. Orsborn, J. Cagan, R. Pawlicki, R. Smith, “Pushing the Limits of 
Vehicle Design: Utilizing a Parametric Shape Grammar to Explore 
Cross-Over Vehicle Concepts”, Proceedings DETC, 2006. 

[10] B. Allen, B. Curless, Z. Popovic, “The Space of Human Body Shapes: 
Reconstruction and Parameterization from Range Scans”, Proceedings 
SIGGRAPH, 2003. 

[11] C. Shelton, "Morphable Surface Models", International Journal of 
Computer Vision,  Vol. 38, No. 1,  pp. 75-91, 2000. 

[12] D. Wiley, N. Amenta, D. Alcantara, D. Ghosh, Y. Kil, E. Delson, W. 
Harcourt-Smith, F. Rohlf, K. St. John, B. Hamann, “Evolutionary 
Morphing”, Proceedings IEEE Visualization, VIS 05, pp. 431-438. 

[13] P. Alliez, D. Cohen-Steiner, O.Devillers, B. Levy, M. Desbrun, 
“Anisotropic Polygonal Remeshing”,SIGGRAPH, 2003/ACM TOG. 

[14] I. Kokai, J. Finger, R. Smith, R. Pawlicki, T. Vetter, "Example-Based 
Conceptual Styling Framework for Automobile Shapes”, Proceedings, 
Fourth Eurographics Workshop on Sketch-Based Interfaces and 
Modeling, 2003. (Accepted for publication) 

[15] H.S.M. Coxeter, Regular Polytopes, Third Edition, Dover Edition 1973. 
[16] M. Meyers, H. Lee, A. Barr, M. Desbrun, “Generalized Barycentric 

Coordinates on Irregular Polygons”, Journal of Graphics Tools, Nov. 
2002. 

[17]  A. Gelb, (Ed.), Applied Optimal Estimation, M.I.T. Press, 1984.  
[18] R. Smith, R. Pawlicki, “Conceptual Shape Design Using Optimal 

Estimation Techniques” GM R&D Collaboration Report, 2003.  
 


