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Abstract. We consider the problem of non-rigid, point-to-point regis-
tration of two 3D surfaces. To avoid restrictions on the topology, we
represent the surfaces as a level-set of their signed distance function.
Correspondence is established by finding a displacement field that mini-
mizes the sum of squared difference between the function values as well
as their mean curvature. We use a variational formulation of the problem,
which leads to a non-linear elliptic partial differential equation for the
displacement field. The main contribution of this paper is the applica-
tion of an adaptive finite element discretization for solving this non-linear
PDE. Our code uses the software library DUNE, which in combination
with pre- and post-processing through ITK leads to a powerful tool for
solving this type of problem. This is confirmed by our experiments on
various synthetic and medical examples. We show in this work that our
numerical scheme yields accurate results using only a moderate number
of elements even for complex problems.

1 Introduction

Virtually all methods in pattern recognition and image analysis rely on prior
knowledge about the problem to be solved. Often, this prior knowledge is given
in the form of statistical information acquired from a set of representative exam-
ples. In order to be able to extract meaningful information from several objects
of a class, the objects have to be brought into correspondence. That is, to ev-
ery point in a reference object, one needs to find the corresponding point in
all the examples. The problem of establishing correspondence is known as the
registration problem.

In this article we consider the problem of dense point-to-point registration
of two 3D surfaces. Surface registration is a common problem and has been
researched extensively (see [6] for a comprehensive survey). Most common ap-
proaches to surface registration are either formulated directly in terms of the
given surface triangulation or require the surfaces to be parameterized. The ap-
proach we propose in this paper is to represent the surfaces as the zero-level set
of the signed distance function to the surface. This formulation yields a prob-
lem description that is independent of the topology of the surface. Further, it
leads naturally to a variational formulation and allows us to apply the powerful
mathematical methods developed in this field (see e.g. [9]).
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While our method is general and can be applied to many surface registration
tasks, our particular motivation stems from two problems in medical imaging.
The goal is to build a statistical model of the human skull and the femur bone
respectively. The human skull is a complex structure and finding a suitable
surface parametrization is deemed infeasible. For registration of the femur, the
advantage of our representation is that correspondence is established for a neigh-
borhood around the surface, which helps later to fit the inner structures of the
bones.

The idea of surface registration using a level-sets representation of the sur-
faces has been described earlier [18, 14]. For the mathematical formulation, our
contribution is the inclusion of an additional curvature term in the model that
drives the registration in direction tangential to the surface, similar to [12]. The
difference to our work is that the curvature is calculated on the parametrization,
while we extend the curvature feature to the whole space.

This formulation and its relation to the well known Thirion’s Demons algo-
rithm [17] has been detailed in [13]. The main contribution of this paper is a
memory-efficient and flexible representation of the data using adaptive finite el-
ements together with its numerical implementation using the DUNE library [2].
The finite element representation gives the flexibility to represent fine details
where this is needed (e.g. around the surface) while providing a sparse represen-
tation of the function. Further, the numerical method can be easily parallelized.

This paper is structured as follows: In Section 2 we present the mathemati-
cal model of our approach. Section 3 describes the finite element discretization
and the numerical procedure we employ to solve the registration problem. The
feasibility of our approach is illustrated in Section 4 where we show registration
results for medical 2D and 3D examples. A more detailed study of the algorithm
including variation of parameters and a comparison with a finite difference im-
plementation in ITK [11] is published in [3].

2 Mathematical Model

In this section we present the mathematical model we use for surface registration.
In general, registration is an ill-defined problem. The notion of correspondences
can greatly vary for different applications. For our application, we define three
criteria a good registration has to fulfill: 1) the surfaces should be accurately
matched, 2) the curvature at corresponding points should be similar and 3) the
deformation should be smooth. In the remainder of this section, we will make
these notions precise.

2.1 Level-Set Representation

A common way to model a surface is by representing it as the zero level set of
an auxiliary function I : IRn → IR. This means that the surface Γ is given as:

Γ := {x ∈ IRn | I(x) = 0}.
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The main advantage of the level-set representation is the independence of the
surface’s topology. In practice, the most common choice for representing a given
surface Γ ⊂ IRn through a level set function is to use the signed distance function
to Γ :

I(x) := dΓ (x) =


dist(x, Γ ) x ∈ outside(Γ )
0 x ∈ Γ

−dist(x, Γ ) x ∈ inside(Γ ),
(1)

where dist(x, Γ ) is the Euclidean distance from x to Γ and the inside and outside
of Γ have to be assigned in some meaningful way. When calculated on a rectan-
gular domain Ω ⊂ IRn, the distance function can be interpreted as an image over
Ω. This leads to the problem of intensity based, non-rigid image registration.
In fact our formulation of the problem has been derived from Thirion’s Demon
algorithm, one of the most widely used image-registration algorithms.

2.2 Thirion’s Demons

In his landmark paper, Thirion [17] proposed a method for three-dimensional,
non-rigid image registration. Originally formulated in a heuristic manner as an
optical flow like algorithm, it was later rigorously studied and formalized. In par-
ticular, Modersitzki [15] as well as Cachier et al. [16], have presented variational
formulations of the Demons Algorithm, on which we base our work.

The Demons algorithm corresponds essentially to the variational problem of
minimizing the functional

J [u] = D[u] + αR[u]

where
D[u] =

1
2

∫
Ω

1
QI(x) (I0(x + u(x))− I1(x))2 dx

is a distance measure, and

R[u] =
1
2

3∑
l=1

∫
Ω

|∇ul|2 dx

is a regularization term. Here I0 and I1 are the images defined on Ω and
u : Ω → R3 is the displacement field to be calculated. The parameter α ∈ R
controls the influence of the regularizer. The weight QI is chosen as QI(x) =
|∇I0(x)|2 + (I0(x) − I1(x))2, motivated by Thirion’s original formulation. See
[16] for a detailed discussion and interpretation of this term.

The registration problem is thus to find the deformation field u, that solves
the following variational problem:

J [u] = D[u] + αR[u] → min . (2)

From the calculus of variations, it is known that any solution has to fulfill the
Euler Lagrange equation:

1
QI(x) (I0(x + u(x))− I1(x))∇I0(x + u(x))− α4u(x) = 0, ∀x ∈ Ω. (3)
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(a) (b)

Fig. 1: Two skulls colored according to their mean curvature.

This is a non-linear elliptic partial differential equation, which can, for example,
be solved using the numerical method presented in Section 3.

2.3 Curvature guided registration

Thirion’s Demons algorithm was designed for the registration of medical images
(e.g. CT images), that feature meaningful information on the whole domain.
In our approach the only information comes from the surface that represents
the zero-level set. Furthermore, on the zero-level set, the value is by definition
zero everywhere. We have no information about features that could guide the
registration in surface direction. Hence corresponding points are, apart from
the influence of the smoothing term R, only sought in the direction normal to
the level sets. The resulting correspondences on the zero-level do therefore not
necessarily correspond to meaningful features. For a large class of objects, cor-
responding points in two surfaces have similar curvature. Therefore, we use the
mean curvature at a point as an additional feature to be matched. Figure 1 illus-
trates that for registration of human skulls, the curvature is indeed a reasonable
feature to include.

We extend the functional including an additional term which leads to a
matching of the curvature

C[u] :=
1
2

∫
Ω

1
QH(x) (H0(x + u(x))−H1(x))2 dx.

where H0(x) and H1(x) are the mean curvatures at point x for I0 and I1, re-
spectively. The weight QH(x) is chosen analogously to QI(x). The registration
problem is now to find u that solves the following problem:

J [u] := D[u] + βC[u] + αS[u] → min . (4)

The Euler-Lagrange equation is extended in the obvious way, leading to

−α4u = F (u) (5)

with

F (u) := I0(x+u(x))−I1(x)
QI(x) ∇I0(x + u(x)) + H0(x+u(x))−H1(x)

QH(x) ∇H0(x + u(x)) ,
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3 Finite Element Discretization

In this section we describe the steps taken for computing the solution u for given
data I0, I1,H0, and H1 from (5). In [15], Modersitzki showed that the Demons
algorithm can be interpreted as a simple fix point iteration scheme for the non-
linear elliptic equation (5). The solution u is obtained from an initial solution
u0 by iteratively performing the computation

un+1 = un + τ (α4un + F (un)) .

Alternatively, we can interpret this equation as a forward Euler step for the heat
equation

∂tu− α4u = F (u) (6)

with step size τ . In this presentation we will focus on deriving methods for
computing large time solutions u = u(t, x) of (6). Since we are interested in the
large time limit we use as the initial conditions simply u(0, x) = 0 in all our
calculations. For the simulations shown here we have used Neumann boundary
conditions.

Since the elliptic operator in the heat equation leads to a severe time step
restriction, coupling the time step τ to the mesh width h via τ = O(h2), we use
an implicit time discretization for the elliptic part of (6). To avoid problems with
the nonlinear term F (u) we want to discretize this term in an explicit fashion.
Fixing a time step τ , and using the abbreviation un(x) ≈ u(nτ, x) we propose
the following semi-implicit scheme:

un+1 − τα4un+1 = un + τF (un). (7)

This approach is similar to Thirion’s approach with the exception that the elliptic
term is treated implicitly. Similarly higher order implicit/explicit Runge-Kutta
schemes for the time discretization can be used [5].

It remains to specify the spatial finite element discretization of the image do-
main. We use a Discontinuous-Galerkin Finite-Element approach. This method
is very well suited for this type of problem and can be easily used with lo-
cally adapted grids and domain decomposition strategies for parallelization on
distributed memory computers. Given a tessellation Th = {Ti}i∈I of the com-
putational domain Ω into non overlapping elements (see Figures 4 and 2a in the
following Section), this scheme follows the same ideas as the standard Galerkin
method [7] but employs a discontinuous ansatz space: V k

h := {vh : vi ∈
Pk(Ti) for i ∈ I}. Here vi ≡ vh|Th

and Pk(Ti) denotes the space of polynomials
on the element Ti of order k. Note that there are no continuity assumptions
between elements.

Now, a variational formulation for the implicit and the explicit part

Limpl := u− τα4u, Lexpl := u + τF (u) (8)
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of the semi-implicit scheme (7) is derived: The explicit part is easily discretized
on an element Ti by: ∫

Ti

Lexpl,iϕ =
∫

Ti

(ui + τF (ui))ϕ dx (9)

for all ϕ ∈ Pk(Ti).
Due to the discontinuous ansatz space, the discretization of the elliptic term

is slightly more complicated as in the standard Galerkin approach. We employ
the approach known as the local Discontinuous Galerkin method, rewriting for
given uh ∈ Vh the second order equation Limpl,h = uh − τα4uh as a system of
first order equations

vh = ∇uh, Limpl,h = uh − ατ∇ · vh .

Limpl,h is now computed from the variation formulation:∫
Ti

viϕ =
∫

∂Ti

[uh]ϕ−
∫

Ti

uh∇ϕ , (10)∫
Ti

Limpl,iϕ =
∫

Ti

uhϕ−
∫

∂Ti

τα[vh]ϕ +
∫

Ti

ταvh∇ϕ (11)

for all ϕ ∈ Pk(Ti); we have used the abbreviation [vh] to denote the jump of a
discrete function vh ∈ Vh over element boundaries. For more details see [10, 4].

For constructing the tessellation we use the ALUGrid library [1] using hex-
ahedral meshes in 3d and triangular meshes in 2d with non-conforming local
adaptivity and the possibility of domain decomposition and dynamic load bal-
ancing for parallel computations. The whole numerical scheme is implemented
using the generic grid concept from the software library DUNE [2] and the dis-
cretization methods from the DUNE-FEM package [8]. Since the DUNE library
is implemented in C++ the incorporation of the solution algorithm into the ITK
framework [11] presents no major problems so that the pre- and post-processing
facilities developed here can be directly used.

4 Results

For the results presented here, the shapes have been aligned prior to registration,
to remove large translational and rotational parts. In all the computation we used
τ = 1, α = 1, and β = 1. Using larger values of τ can increase the convergence
rate of the numerical scheme and due to the implicit treatment of the elliptic
operator does not lead to instability of the scheme; the same holds for smaller
values of α but in both cases the smoothness of the displacement field u is
decreased in an unsatisfactory manner. For the spatial discretization we have
used k = 0, 1, 2 i.e., constant, linear, and quadratic polynomials on each element
and also higher order time-discretization schemes. Here, we only show results
with k = 1 together with a first order semi-implicit time discretization scheme.
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(a) (b)

Fig. 2: Registration of two 2D-slices through the femur. Figure 2a shows the outline
of the shapes and the discretization of the images, while Figure 2b shows the resulting
displacement field.

To increase the rate of convergence and to take advantage of the possibilities
offered by local grid adaptation, we start the computation using a coarse grid
of less than 100 elements and after performing a number of iterations on this
coarse grid, refine the grid elements on which

max{|I0(x)|, |I0(x + un(x))|, |I1(x)|} < R

holds for a given value of R. The indicator R is then decreased and the iteration
process is repeated. The full details of the algorithm and a study of the influence
of the parameters are published in [3].

4.1 Registration of a femur

As a first test, we register two 2D slices of a 3D femur bone. Figure 2a shows
the two shapes to be registered and the locally adapted tessellation of the image
domain. The shape of the slice is well matched and the resulting correspondences
are reasonable as demonstrated in Figure 2b where we also show the resulting
displacement field.

In Figure 3 we see the registration results for the 3D femora from our
database. The image shows that the registered image matches the shape of the
target accurately. The discretization used is illustrated in Figure 4a. We see that
the resolution is highest around the surface and hence we can represent fine
details where this is necessary.

4.2 Registration of a skull

As a further example, we consider the registration of two skulls. The discretiza-
tion used is illustrated in Figure 4b. As previously mentioned, one of the main
motivation for the level-set representation was to register surfaces of arbitrary
topology. In this example the data is noisy and the topology of the skulls differ
due to segmentation artifacts and the limited resolution of the original CT-image.
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(a)

(b) (c)

Fig. 3: The reference femur (a) is registered onto a target (b). In (c), the registration
result is shown together with the adaption level (blue=2, red=5).

(a) (b)

Fig. 4: The discretization for the representation of the skull surfaces and the femur
(refinement levels represented by color).

Still the shape is accurately matched as can be seen in Figure 5. Although not
the main motivation of this work, an immediate application is atlas-based la-
beling of a target skull. This is illustrated in Figure 5, where the mandible is
labeled in a reference skull and the labelling is transformed to an unlabelled
target skull using the calculated deformation field u. Moreover, this provides us
with a test to validate the quality of the registration result. It can be seen, that
the mandible is correctly identified in the target skull.

5 Discussion

Our results demonstrate that even on quite coarse grids and for complex reg-
istration prolems, the finite element method leads to very good results. Even
the challenge posed by the registration of the human skull was met by the al-
gorithm. The advantage of the local grid adaption for this type of problem is
evident, since mainly the neighborhood of the surface must be well resolved
while outlying regions can be treated with a far lower resolution without reduc-
ing the quality of the match. In the calculation for the 3D femura, the resulting



9

(a) (b) (c)

Fig. 5: The labelling of a reference skull (a) is automatically transformed to a target
skull (b), (c).
Computation time for the skull registration was 4.5 hours on a AMD Opteron 2.4GHz.

finest grid consisted of less than 400.000 hexahedra, compared to more than 10M
points used in our ITK implementation. A similar reduction was achieved for the
skull example. Also the finite element formulation seems to be very robust, so
that additional strategies like using smooth low resolution images do not seem
to be required for the convergence of the scheme. The implicit treatment of the
elliptic part also enhances the stability of the method so that a wide range of
parameters can be used with this scheme.

The consequent focus on the formulation of the problem as a PDE offers
a wide range of further approaches for computing the displacement field, e.g.,
higher order schemes or pre-conditioning strategies like multigrid approaches.
These can lead to a further increase in the efficiency of the scheme. The DUNE
package used for our implementation is based on a generic interface both for
the grid structure and the numerical scheme, thus allowing for a generic im-
plementation of the solution method including local adaptivity and dynamic
load balancing. We can therefore easily apply different numerical schemes to the
registration problem, such as continuous Galerkin discretizations, fully implicit
time stepping schemes or direct methods for the non-linear elliptic equation, and
compare these with the method presented here. We will study the possibilities
offered by this concept in future work.
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