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Abstract

We show how to extend the ICP framework to nonrigid
registration, while retaining the convergence properties of
the original algorithm. The resulting optimal step nonrigid
ICP framework allows the use of different regularisations,
as long as they have an adjustable stiffness parameter.

The registration loops over a series of decreasing stiff-
ness weights, and incrementally deforms the template to-
wards the target, recovering the whole range of global and
local deformations.

To find the optimal deformation for a given stiffness, op-
timal iterative closest point steps are used. Preliminary
correspondences are estimated by a nearest-point search.
Then the optimal deformation of the template for these fixed
correspondences and the active stiffness is calculated. Af-
terwards the process continues with new correspondences
found by searching from the displaced template vertices.

We present an algorithm using a locally affine regulari-
sation which assigns an affine transformation to each ver-
tex and minimises the difference in the transformation of
neighbouring vertices. It is shown that for this regularisa-
tion the optimal deformation for fixed correspondences and
fixed stiffness can be determined exactly and efficiently.

The method succeeds for a wide range of initial condi-
tions, and handles missing data robustly. It is compared
qualitatively and quantitatively to other algorithms using
synthetic examples and real world data.

1. Introduction
Registering two surfaces means finding a mapping be-

tween a template surface and a target surface that describes
the position of semantically corresponding points. This can
be considered as warping the template onto the target. To
choose the “correct” deformation from all possible warps,
a registration algorithm has to impose constraints on the
deformation. In this context, this is called regularisation
of the deformation field. We use regularisation based on
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Figure 1. Caricatures help to judge the registration quality by ex-
aggerating flaws and artifacts. The marked left and right images
are registered, hole-filled scans that have been extrapolated and in-
terpolated from the mean head (center). Extrapolated positions are
automatic caricatures.

minimizing the difference between transformations acting
on neighbouring vertices of a mesh. The “correct” regis-
tration is not defined uniquely for all points. The corres-
pondence for a point on the cheek might not be uniquely
identifiable even by a human, while a point like the corner
of an eye can be determined even across subjects.

Dense registration methods find a mapping from each
point in the template onto the target while sparse methods
find correspondence only for selected feature points. We
present a dense registration method.

Registration can be used to build a morphable model, as
introduced by Blanz and Vetter [3]. This is done by reg-
istering the same template onto multiple targets, yielding a
consistent parametrization over all scans, which then form
a linear object class.

For noiseless and complete data, a correct registration
should be one-to-one. In practice the surfaces contain holes
and artefacts resulting from the scanning process. Therefore
a useful registration method needs to be robust against out-
liers and has to fill in missing data in a sensible way. Our
input data is acquired with a structured light 3D scanning
system. An example of a typical scan, the template mesh
used, and the registration result is given in Figure 2.

2. Prior work

Numerous registration algorithms exist, each applica-
ble to different scenarios and having advantages and draw-
backs. Our specific requirement is to match tessellated 3D-
meshes of similar shapes.

Our scans contain large missing regions, generally more



Figure 2. The head template used, a typical (cleaned) mesh ac-
quired by our scanning process, and the registration result.

than half of the surface is missing (Figure 2). These regions
have to be filled in a sensible way, incorporating knowledge
encoded in the template mesh. This is different from hole-
filling methods as described e.g. by Davis et al. [5], which
are able to close holes by interpolating between the borders.
Instead we fill in details by smoothly deforming the tem-
plate mesh. Methods which extend the deformation field
into regions without correspondence are found in Kähler et
al. [12] or Szeliski and Lavallée [14].

Ferrant et al. [9] proposed to regularise based on material
properties. We do not focus on this approach as our surfaces
are acquired from different subjects and the difference be-
tween them does not correspond to a physical deformation.

When registering parts of the face which may move inde-
pendently, like the lower and upper lip, smoothing isotropi-
cally throughout the volume as in [12, 14] has the unwanted
effect of tying together unconnected parts. In this paper,
this is addressed by using anisotropic regularisation which
propagates along the surface, as proposed by Allen et al. [1].

To choose a mapping out of all possible registrations the
allowable deformations are constrained by regularisation of
the deformation field. A common approach is to smooth
the deformation field by minimizing the squared norm of
its gradient, effectively allowing locally smooth transla-
tions. An efficient solution for volumetric datasets has been
proposed by Fisher and Modersitzki [10]. As typical de-
formations in faces are mixtures of rotations and transla-
tions – e.g. lowering the jaw – we search for a regulariser
which favours rigid deformations. Curvature based registra-
tion as described in Fisher and Modersitzki [11] minimises
the Laplacian of the deformation field, allowing for locally
smooth affine transformations, a superset of rigid deforma-
tions. For surfaces, Feldmar and Ayache [8], and more re-
cently Allen et al. [1] describe a regularisation which uses
locally different affine transformations. While different reg-
ularisers can be incorporated into our framework, the main
algorithm presented here uses a regularisation similar to [1].

Iterative Closest Point methods find a preliminary set
of correspondences by searching for the closest points to
the template vertices on the target surface, find a transfor-
mation which aligns the template to these correspondences
and start again with a new set of correspondences found by
searching from the vertices of the displaced template. ICP

methods are distinguished by the type of deformation they
recover, and by the way in which these deformations are
found. Chen and Medioni [4] and Besl and MacKay [2] es-
timate a global rigid transformation. In these methods each
step of the iteration is optimal with respect to the fixed cor-
respondences. The difference in the two methods is that in
[4] preliminary correspondences are found only along the
surface normal, while [2] uses the closest point. Feldmar
and Ayache [8] introduce locally different transformations.
They choose spherical subsets of the template volume and
determine an affine transformation within this region. To
get a smooth deformation field the resulting affine transfor-
mations are blended linearly between the sphere centers. As
the affine transformations are determined independently per
sphere, the resulting (blended) deformation is no longer op-
timal with respect to the fixed correspondences.

When determining an affine transformation for a set of
vertices as proposed by Feldmar and Ayache [8], the affine
transformation is uniquely determined by the correspon-
dences. Allen et al. [1] propose to determine one affine
transformation per vertex. This is surprising, as a single
correspondence does not uniquely determine an affine trans-
formation. To further constrain the problem, a regulariser,
which can be interpreted as a stiffness term, is added. It
forces neighboring vertices to undergo similar transforma-
tions. The open question whether or not this is enough to
constrain the problem is addressed in our paper.

3. Contributions
We define the optimal step nonrigid ICP framework,

which extends ICP methods to nonrigid deformations while
retaining the convergence properties of ICP. Different regu-
larisations can be used in this framework. A version based
on the locally affine regularisation from [1], and an algo-
rithm using locally smooth translations is developed. Our
algorithm improves upon the method in [1] in multiple as-
pects. Already in the seminal paper of Besl and MacKay [2]
it was observed that finding the optimal deformation for a
given correspondence is more accurate and more efficient
than handing the distance cost to a general optimization
method. This was abandoned in [1]. Instead a general
Newton-type optimiser (L-BFGS-B, Zhu [15]) was used on
the cost function. We show how for the regulariser used the
optimal transformation for a given set of correspondences
and a fixed stiffness can be determined, allowing us to make
optimal steps. This overcomes the numerical instabilities
introduced by using a general optimiser with a localised
stiffness term, leading to a better registration. It is shown
that a method using a general “black-box” optimiser has a
very small convergence basin and fails on incomplete sur-
faces, if the initialization is not already nearly perfect. Our
algorithm is robust against bad initialization and handles in-
complete surfaces very well.



4. Method
In this section the regularisation used in this paper is in-

troduced, and nonrigid optimal step ICP algorithms are de-
fined. The template S = (V, E) is given as a set of n ver-
tices V and a set of m edges E . The target surface T can
be given in any representation that allows to find the clos-
est point on the surface for any point in 3D-space. We use
a triangulated mesh. Registration means finding parame-
ters X describing a set of displaced source vertices V(X).
After registration V(X) is projected onto the target surface
along the normals of the deformed template to give the fi-
nal correspondences. The projected vertices define – to-
gether with the original topology of the template mesh – a
reparametrised version of the original scan.

Locally affine regularisation The cost function used in
this paper to determine the warping is similar to the one
defined in [1]. The difference is, that by expressing the al-
gorithm in the nonrigid optimal step ICP framework we are
able to simplify it for fixed correspondences such that it is a
quadratic function which can be solved directly and exactly.
Additionally a slightly different norm, which includes the
norm from [1] as a special case, is used.

The proposed parametrization of the mapping is one
affine 3 × 4 transformation matrix Xi per template vertex.
The unknowns are organised in a 4n × 3 matrix

X :=
[
X1 · · · Xn

]T
. (1)

Naturally the distance between the deformed template
and the target should be small. This is expressed by the
first term of the cost function used in this paper:

Ed(X) :=
∑
vi∈V

wi dist2(T ,Xivi) (2)

To improve readability, we assume that template vertices are
given in homogeneous coordinates vi =

[
x, y, z, 1

]T
. The

distance between a point v and its closest point on the target
surface is denoted as dist(T ,v). A hierarchical bounding
spheres structure is used to speed up nearest point search to
O(log2 t) in the number of target triangles. The reliability
of the match is weighted by wi. The weights are set to zero
for vertices where no corresponding vertex could be found.
For the other vertices the weight is set to one. If an addi-
tional estimate of the reliability is available, e.g. from the
scanner, the weights can be set accordingly.

An additional stiffness term is used to regularise the de-
formation. We penalise the weighted difference of the trans-
formations of neighbouring vertices under the Frobenius
norm ‖·‖F using a weighting matrix G := diag(1, 1, 1, γ).

Es(X) :=
∑

{i,j}∈E

‖(Xi −Xj)G‖2
F (3)

γ can be used to weight differences in the rotational and
skew part of the deformation against the translational part
of the deformation. The choice of γ depends on the units
of the data, and on the type of deformation that shall be
expressed. In the experiments presented here γ was set to
one and the data was scaled into the [−1, 1]3 cube.

While the displacement of a vertex can be described by
only three parameters, we use twelve parameters per ver-
tex. This will allow us to write the cost as a quadratic
function. Constructing a cost function for this regularisa-
tion term with only three parameters per vertex results in a
minimization problem which can not be solved directly.

The third contributor to the cost function is a sim-
ple landmark term, used for initialization and guid-
ance of the registration. Given a set of landmarks
L = {(vi1 , l1), . . . , (vil

, ll)} mapping template vertices
into the target surface the landmark cost is defined as

El(X) :=
∑

(vi, l)∈L

‖Xivi − l‖2 . (4)

As demonstrated in Section 5, the correct registration can be
found even without landmarks. Without landmarks the cost
function has global minima where the template is collapsed
onto a point on the target surface, but the local minimum
corresponding to the correct registration can be found for a
wide range of initial conditions.

The full cost function is a weighted sum of these terms

E(X) := Ed(X) + αEs(X) + βEl(X) . (5)

The stiffness weight α influences the flexibility of the tem-
plate, while the landmark weight β is used to fade out the
importance of the potentially noisy landmarks towards the
end of the registration process.

Contrary to [1] we use a modified ICP algorithm to effi-
ciently and accurately minimise Equation (5).

4.1. Nonrigid optimal step ICP algorithms

The following steps constitute a nonrigid optimal step
ICP algorithm:
• Initialise X0.
• For each stiffness αi ∈ {α1, . . . , αn}, αi > αi+1

◦ Until ‖Xj −Xj−1‖ < ε
� Find preliminary correspondences for V(Xj−1).
� Determine Xj as the optimal deformation for the

preliminary correspondences and αi.
It consists of two loops. The outer loop finds a series of
deformations of the template that bring the template ever
closer to the target. Starting with a strongly regularised
(stiff) deformation global alignment is recovered and then
successively lower stiffness weights are used, allowing for
more localised deformations.
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Figure 3. The template surface S (green) is deformed by locally
affine transformations (Xi) onto the target surface T (red). The
algorithm determines closest points (ui) for each displaced source
vertex (Xivi) and finds the optimal deformation for the stiffness
used in this iteration. This is repeated until a stable state is found.
The process then continues with a lower stiffness. Due to the stiff-
ness constraint the vertices do not move directly towards the target
surface, but may move parallel along it. The correspondences u1

and u4 are dropped as they lie on the border of the target.

Finding a deformation for a fixed stiffness is done in the
inner loop. Preliminary correspondences are found by a
nearest point search. Then the optimal deformation of the
template for these correspondences and the fixed stiffness is
determined. Due to the stiffness of the template the points
do not move directly towards their preliminary correspon-
dences, but may move parallel to the target surface. The
new template position gives rise to a new set of preliminary
correspondences, which are used in the next iteration. This
is repeated until the process converges. The stiffness is then
lowered and the search continued.

Figure 3 shows a detail of an intermediate step of the
registration. The template has moved towards the target,
but due to the stiffness constraint it is not yet inside the tar-
get surface. The correspondence points ui of the deformed
template S(X) change in each iteration.

Nonrigid optimal step ICP algorithms can be constructed
for different regularisers, as long as the regulariser has a
stiffness parameter determining the amount of acceptable
local deformation. For the locally affine regularisation in-
troduced in the first part of this section we show now how
to determine the optimal deformation for fixed stiffness and
correspondence. In Section 5 another regulariser is intro-
duced and their performance is compared.

4.2. Efficient and robust minimization

Contrary to the approach of [1] we find in each step the
optimal deformation for fixed stiffness and fixed correspon-
dence. This is superior to using a “black-box”-optimiser di-
rectly on Equation (5), as the stiffness term is defined only
over neighbouring vertices, and propagation of stiffness in-
formation over multiple edges is slow and fragile. While
a general optimiser uses the fixed correspondences only to
determine approximate gradients which influence the new
search direction, we show how to make full use of the cor-
respondence information by finding the optimal deforma-

tion in each step of the algorithm.
When correspondences are fixed, the cost function be-

comes a sparse quadratic system which can be minimised
exactly. To adapt the cost function to fixed correspon-
dences, only the first term has to be changed. In this section
Equation (5) is rewritten for fixed correspondences using
matrix expressions.

Ē(X) := Ēd(X) + αEs(X) + βEl(X) (6)

By repeated minimization of Ē a local minimum of E is
found.

Distance Term Assuming fixed correspondences
(vi,ui), the distance term defined in Equation (2) becomes

Ēd(X) :=
∑
vi∈V

wi‖Xivi − ui‖2 (7)

=

∥∥∥∥∥∥∥(W ⊗ I3)


X1

. . .
Xn


v1

...
vn

−

u1

...
un




∥∥∥∥∥∥∥
2

where W := diag(w1, . . . , wn). (The n×n identity matrix
is denoted by In and the Kronecker product by ⊗). Recall
that the unknowns are the submatrices Xi. As this formu-
lation does not lend itself to being differentiated easily we
bring the equation into canonical form by swapping the po-
sitions of the unknowns and the fixed vertices vi. We define
the sparse matrix D mapping the 4n×3 matrix of unknowns
X onto displaced source vertices as

D :=


vT

1

vT
2

. . .
vT

n

 . (8)

Arranging the correspondence points in a matrix U :=[
u1, . . . ,un

]T
, the distance term can be written as:

Ēd(X) = ‖W (DX −U)‖2
F . (9)

The identity of these expressions comes directly from the
definition of the matrix product.

Stiffness Term The stiffness term penalises differences
between the transformation matrices assigned to neighbour-
ing vertices. To express this in matrix notation, we use the
node-arc incidence matrix M (e.g. Dekker [7]) of the tem-
plate mesh topology. This matrix is defined for directed
graphs. It contains one row for each arc (edge) of the graph
and one column per node (vertex). To construct a node-
arc incidence matrix from the source topology, the edges



and vertices of the mesh are numbered and its edges are di-
rected from the lower numbered vertex to the higher num-
bered. If edge r connects the vertices (i, j) the nonzero
entries of M in row r are M ri = −1 and M rj = 1. With
G := diag(1, 1, 1, γ) the stiffness term can be written as

Es(X) = ‖(M ⊗G)X‖2
F . (10)

Landmark Term The landmark term is similar to the dis-
tance term. We take the rows out of D that correspond to
the landmark vertices, denote those by DL and use the cor-
respondence from the landmarks, UL =

[
l1, . . . , ll

]T
.

El(X) = ‖DLX −UL‖2
F . (11)

Complete cost function The resulting quadratic function

Ē(X) =

∥∥∥∥∥∥
αM ⊗G

WD
βDL

X −

 0
WU
UL

∥∥∥∥∥∥
2

F

(12)

= ‖AX −B‖2
F

can be minimised directly and exactly by setting its deriva-
tive to zero and solving the resulting system of lin-
ear equations. Ē(X) takes on its minimum at X =
(AT A)−1AT B. This allows us to determine in each step
of the algorithm the deformation which is optimal in the
sense that it exactly minimises the cost function for fixed
stiffness and correspondences.

If A does not have rank 4n , the Hessian AT A is not
invertible and the problem is ill posed. It is not obvious
that the system is fully determined, as only three constraints
per vertex result from the correspondence, but twelve free
parameters per vertex are used. None of the submatrices
M ⊗G, D, and DL of A corresponding to the three terms
of the cost function has full rank on its own. The only ma-
trix with enough rows is M ⊗G, but a node-arc incidence
matrix for n nodes, such as M , has only rank n − 1 [7].
Accordingly M ⊗ G has rank 4n − 4 and a more detailed
analysis is needed.

4.3. Well-Posedness

We prove that A has rank 4n , such that AT A is invert-
ible. (The landmark term is ignored, as it only adds unnec-
essary clutter and does not influence the result.) Partition A
into n blocks corresponding to the vertices of the template.
Each block A1, . . . ,An consists of four columns.

A =


αM1 ⊗G . . . αMn ⊗G

vT
1

. . .
vT

n

 (13)

=
[

A1 . . . An

]

Denote the p’th column in the i’th block of columns by Ap
i .

Ai =
[

A1
i A2

i A3
i A4

i

]
(14)

If A had not full rank, we could find a set of nonzero coef-
ficients ap

i satisfying∑
p

∑
i

ap
i A

p
i = 0 . (15)

The upper part of A is constructed from a node-arc-
incidence matrix Kronecker multiplied with a diagonal ma-
trix and scaled by α. The row 4(r − 1) + p of A corre-
sponding to an edge r which connects the vertices i and j
has nonzero values only in the columns 4(i − 1) + p and
4(j − 1) + p for p = 1, . . . , 4. The values of these entries
differ only in the sign. This implies, that the coefficient ap

i

of column Ap
i is equal to the coefficient ap

j if vertex j is con-
nected to vertex i in the mesh. As this holds for any i with
a nonzero ap

i it implies that for a connected graph all ap
i for

fixed p and any i are equal. In consequence, there are only
at most four different ap values and the linear combination
takes the form ∑

p

ap
∑

i

Ap
i = 0 (16)

The lower part of A representing the vertex correspon-
dences adds more constraints. In row 4n + i corresponding
to vertex i there are nonzero entries only in A4n+i,4(i−1)+p

for p = 1, . . . , 4. All other values in this row are zero. This
implies that to cancel out column Ap

i other columns pertain-
ing to the same vertex are needed. As a result every vertex
puts a constraint on the ratio between the coefficients.

∀i = 1, . . . ,n : vT
i


a1

a2

a3

a4

 = 0 (17)

When taking all vertices into account this leads to the
overdetermined system of equationsvT

1
...

vT
n




a1

a2

a3

a4

 = 0 . (18)

Except for degenerate cases the only solution of this system
is the null-vector which implies that all ap are null, contra-
dicting the assumption. This shows that A has full column
rank, the Hessian is invertible, and the problem well posed.

4.4. Missing data and robustness

Template vertices vi which correspond to missing data in
the target are handled by setting the weight wi from Equa-
tion (2) to zero. To detect which vertices have no correspon-
dence three tests are used. A correspondence (Xivi,ui) is



dropped if 1) ui lies on a border of the target mesh, 2) the
angle between the normals of the meshes at Xivi and ui is
larger than a fixed threshold, or 3) the line segment Xivi to
ui intersects the deformed template. The last test removes
wrong correspondences introduced in regions where multi-
ple surface layers are stacked – e.g. the ear – and only the
outermost layer has been measured by the scanner.

Smooth infilling of missing data is achieved because of
the template stiffness. Vertices without correspondences are
moved such that the overall deformation is smooth.

If all vertices have correspondences and no reliability
weighting is used, the residual in an optimal step ICP al-
gorithm will always decrease. This is because neither find-
ing a new deformation, nor finding new closest points can
increase the residual. The new deformation decreases the
residual with respect to the preliminary points, and search-
ing for new closest points can never yield correspondences
further away than the closest points from the previous it-
eration. A formal proof for the rigid case which applies
equally to the nonrigid case can be found in [2]. When
handling missing data by ignoring the contribution of ver-
tices without correspondence to the distance term, this is no
longer true. While the template aligns itself with the target,
new correspondences are found and reliability weights wi

are increased. Accordingly, the residual may increase even
though the correspondence improves.

The increasing residual inhibits a standard “black-box”
optimiser as used in [1] from finding the correct correspon-
dence, as these methods assume that the function has to de-
crease monotonically towards the optimum. In contrast, our
optimization scheme is robust against this effect, as we do
not impose the constraint of having a decreasing cost func-
tion. Addressing this issue by setting the distance contribu-
tion for vertices without correspondences to some arbitrary
large value would not improve the situation, as this would
push the template completely onto the scanned data, and
the hole-filling capabilities of the method would be lost. A
plot of the residual during the registration of the nonlinear
synthetic example from Figure 5 is shown in Figure 4.

5. Evaluation
We evaluate the method on a synthetic example and on a

real world dataset of facial scans comparing three different
registration algorithms.

As “nonrigid optimal step ICP algorithm with a stiffness
term based on minimizing the difference of affine matrices
assigned to neighbouring vertices” is an awkward name, we
introduce the acronym N-ICP-A for our method. We will
refer to the algorithm in [1] as Allen’03.

To demonstrate the advantage of penalizing the differ-
ence between affine transformations over penalizing the
difference between translations we introduce N-ICP-T – a
method similar to N-ICP-A – which regularises by mini-
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Figure 4. The no-monotonic decrease of the residual prohibits the
use of a black-box optimiser. The figure shows the residual ver-
sus iteration during a registration. The residual increases between
some steps, as the reliability weights increase when the template
aligns itself with the target and more points find a correspondence.
A general optimiser can not escape from the local minima, while
our method is robust against this behaviour. Convergence is deter-
mined by checking if a fix-point has been reached.

mizing the difference between the translations of neigh-
bouring vertices. This corresponds to minimizing the gra-
dient of the deformation field and models locally smooth
translations. The unknowns for this method are organised
in a n×3 matrix X =

[
x1, . . . ,xn

]T
. Denoting the Frobe-

nius norm as ‖·‖F , the cost function is given by

E(x) =
∥∥∥∥[

αM
WIn

]
X −

[
0

W (U − V )

]∥∥∥∥2

F

. (19)

A landmark term can be added in the obvious way by taking
the corresponding rows from the distance term. Using only
three parameters per vertex leads to a significantly faster
optimization. On the other hand the deformations modelled
by this cost function are more restricted.

Setup For all methods a gradual relaxation of the stiff-
ness constraint lowering α in 100 equally distributed steps
was used. The absolute α values depend on the template
shape and resolution, and should be chosen such that at the
beginning of the algorithm only global deformations are re-
covered. The lowest possible alpha depends also on the type
of data. If α becomes too low the conditioning of A suffers
and the solution becomes instable. All experiments were
done with the same minimal alpha, staying far away from
an unstable system. We start with an excessively high al-
pha, because starting with a high alpha cannot decrease the
quality of the results, it may only lead to more steps being
necessary.

The system of linear equations that arises in each step
of the N-ICP-A and N-ICP-T methods was solved using
the UMFPACK library [6]. For Allen’03 we used the
L-BFGS-B optimiser [15], providing approximate analytic
gradients AT (AX −B).

The stiffness weight is lowered when the norm of the
difference of the parameter vectors from two successive it-
erations is smaller than a threshold.



Template Target N-ICP-A Allen’03 N-ICP-T

Figure 5. Synthetic shapes used to compare the properties of the registration algorithms. The template cube from the first column is
registered onto the two targets in the second column. Backfacing regions are shown darkened. In the top row the target is a rigidly
transformed version of the template with a large missing region. The shape in the bottom row is additionally deformed nonlinearly. The
texture is only used to visualise the deformation within the surface, it is not used in the registration process. N-ICP-A manages to accurately
align the borders and smoothly fill the hole, while Allen’03 fails to find the optimum. N-ICP-T uses a different deformation model, which
does not include rigid deformations. Therefore it fails already when recovering the global rigid deformation.

Synthetic Data We show results on two synthetic
datasets. The template surface of both experiments is an
embossed cube. The first target surface is a rigidly trans-
formed version of the template with a large missing region.
This deformation should be recovered perfectly by the lo-
cally affine registration methods, as it is a globally affine
deformation. The second target surface is a nonlinearly de-
formed version of the first.

The synthetic datasets were registered without land-
marks. The texture is only used to allow a better visualiza-
tion of the deformations inside the surface, the registration
method is completely shape based. The synthetic datasets
and the registration results are shown in Figure 5.

The N-ICP-A method perfectly recovers the rigid defor-
mation and smoothly fills in the missing region in the linear
and nonlinear example. Trying to recover the deformation
with the third method which models only locally smooth
translations fails, as the rigid deformation is not modelled
by the algorithm. When new correspondences are found the
reliability weights and the residual increase. The Allen’03
method fails as the L-BFGS-B optimizer tries to monotoni-
cally decrease the residual. A plot of the residual during the
run of the N-ICP-A algorithm is shown in Figure 4.

Real Data Facial scans of 24 subjects of different gender
and age ranging from 20 to 40 years were acquired with
a structured light system. The scans were roughly cleaned
to remove artefacts resulting from the hair and background.
Fourteen landmarks as shown in Figure 6 were placed man-

Figure 6. Landmarks used for head registration. As the scans of the
ears are extremely fragmented we use four landmarks per ear to
determine the overall shape. Additional landmarks at the eyes and
at the mouth are used for the initial alignment of the two surfaces.

ually. Eight of these landmarks are needed to align the ears,
as our scanner produces fragmented ear scans due to the
acquisition angle and the concavity of the ear. The faces
were first rigidly aligned to the template using the landmark
points, then the full rigid and non-rigid deformations were
recovered with the three methods presented. The last ap-
proximation is projected into the scan along the normals of
the deformed template mesh to exactly represent the sur-
face.

Measures of registration quality have to be domain spe-
cific. For the head scans we propose the following two
measures for objective comparison of the registration re-
sults. For the first measure, we removed the global rigid
deformation between all registered heads by aligning them
against the template head. We then average over the an-
gle between the normals of corresponding points on the
surfaces of all pairs of registered scans. The intuition
behind this is that, when the rigid part is removed, nor-



mals of corresponding points should have approximately
the same direction. Only if points are mapped to differ-
ent parts of the face (i.e. the side of the nose onto the
cheek), the normals should deviate strongly. The average
angle between normals over all pairs of registered scans is

N-ICP-A N-ICP-T Allen’03

5.6◦ 6.8◦ 7.9◦

As a second quality measure the generalization capabil-
ity of a convex model built with the registered faces is used.
We reconstruct each mesh by a convex combination of all
remaining meshes and measure the average l2 distance be-
tween corresponding vertices of the reconstructed and the
original mesh. We denote the stacked vertex positions of a
face i as a vector f i. Finding the nearest mesh is a con-
strained quadratic problem of the form:

α = arg min
α

∥∥[
f1 · · ·f i−1 f i+1 · · ·fn

]
α− f i

∥∥2

∀iαi ≥ 0
∑

i

αi = 1

The reconstruction error measured by averaging over the l2
distance of corresponding points of the reconstructed and
the original mesh was:

N-ICP-A N-ICP-T Allen’03

1710µm 1740µm 2040µm

6. Conclusion and Future Work
The class of optimal step nonrigid ICP algorithms was

introduced, and two instances were compared. They differ
in the modelled deformation space and accordingly regu-
larisation method. It was shown that locally smooth affine
deformations can be used to register shapes with significant
variation. The N-ICP-A method is well suited to register
surfaces with missing data and is robust for a wide range
of initial conditions. The algorithm is distinguished from
previous nonrigid registration methods by taking optimal
greedy steps within each iteration.

We proved that the regularisation introduced in [1] and
used in N-ICP-A leads to a well posed problem.

The algorithm can be expanded naturally to incorporate
additional constraints in the nearest point search. Feldmar
and Ayache [8] proposed to search for the nearest com-
patible point, taking into account distance and normal di-
rection. Another promising candidate is the shape index
(Koenderink and van Doorn [13]), which separates shape
and scale of a surface into two orthogonal dimensions.

We did not make use of texture information, though this
might prove valuable for certain edges like the corner of the
eyes. A problem with texture measure in faces is, that they
are not necessarily connected to the underlying shape. For
example the position of the eyebrows relative to the under-
lying bone structure varies strongly between subjects.

Within the same framework a host of different algo-
rithms can be developed. For registration of facial expres-
sions of a single subject, a physically based regularisation
might prove useful, and the difference between isotropic
and anisotropic regularisation needs to be explored in more
detail.
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