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Linear Object Classes and Image Synthesis
From a Single Example Image

Thomas Vetter and Tomaso Poggio

Abstract —The need to generate new views of a 3D object from a single real image arises in several fields, including graphics and
object recognition. While the traditional approach relies on the use of 3D models, we have recently introduced [1], [2], [3] simpler
techniques that are applicable under restricted conditions. The approach exploits image transformations that are specific to the
relevant object class, and learnable from example views of other “prototypical” objects of the same class.

In this paper, we introduce such a technique by extending the notion of linear class proposed by Poggio and Vetter. For linear
object classes, it is shown that linear transformations can be learned exactly from a basis set of 2D prototypical views. We
demonstrate the approach on artificial objects and then show preliminary evidence that the technique can effectively “rotate” high-

resolution face images from a single 2D view.

Index Terms —3D object recognition, rotation invariance, deformable templates, image synthesis.

1 INTRODUCTION
VIEW-BASED approaches to 3D object recognition and
graphics may avoid the explicit use of 3D models by
exploiting the memory of several views of the object, and
the ability to interpolate or generalize among them. In
many situations, however, a sufficient number of views
may not be available. In an extreme case, we may have to
do with only one real view. Consider, for instance, the
problem of recognizing a specific human face under a dif-
ferent pose or expression when only one example picture is
given. Our visual system is certainly able to perform this
task—even if at performance levels that are likely to be
lower than expected from our introspection [4], [5]. The
obvious explanation is that we exploit prior information
about how face images transform, learned through exten-
sive experience with other faces. Thus, the idea (see [6]), is
to learn class-specific image-plane transformations from
examples of objects of the same class and then to apply
them to the real image of the new object in order to synthe-
size virtual views that can be used as additional examples
in a view-based object recognition or graphic system. Prior
knowledge about a class of objects may be known in terms
of invariance properties. Poggio and Vetter [6] examined, in
particular, the case of bilateral symmetry of certain 3D ob-
jects such as faces. Prior information about bilateral sym-
metry allows the synthesis of new virtual views from a sin-
gle real one, thereby simplifying the task of generalization
in recognition of the new object under different poses. Bi-
lateral symmetry has been used in face recognition systems
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[1] and psychophysical evidence supports its use by the
human visual system [7],[5],[8].

A more flexible way to acquire information about how
images of objects of a certain class change under pose, illu-
mination, and other transformations, is to learn the possible
pattern of variabilities and class-specific deformations from
a representative training set of views of generic or proto-
typical objects of the same class—such as other faces. Al-
though our approach originates from the proposal of Pog-
gio and Brunelli [3], and of Poggio and Vetter [6], for
countering the curse-of-dimensionality in applications of
supervised learning techniques, similar approaches with
different motivations have been used in several different
fields. In computer graphics, actor-based animation has
been used to generate sequences of views of a character by
warping an available sequence of a similar character. In
computer vision the approach closest to the first part of
ours is the active shape models of Cootes, Taylor, Cooper, and
Graham [9]. They build flexible models of known rigid ob-
jects by linear combination of labeled examples for the task
of image search—recognition and localization. In all of
these approaches, the underlying representation of images
of the new object is in terms of linear combinations of the
shape of examples of representative other objects. Beymer,
Shashua, and Poggio [2], as well as Beymer and Poggio [1],
have developed and demonstrated a more powerful ver-
sion of this approach based on non-linear learning net-
works for generating new gray-level images of the same
object or of objects of a known class. Beymer and Poggio [1]
demonstrated that new textures of an object can be gener-
ated by linear combinations of textures of different objects.
In this paper, we extend and introduce the technique of
linear classes to generate new views of an object. The tech-
nique is similar to the approach of [1], [2], but more power-
ful since it relies less on correspondence between prototypi-
cal examples and the new image.

0162-8828/97/$10.00 © 1997 IEEE



734 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

The work described in this paper is based on the idea of
linear object classes. These are 3D objects whose 3D shape
can be represented as a linear combination of a sufficiently
small number of prototypical objects. Linear object classes
have the properties that new orthographic views of any
object of the class under uniform affine 3D transformations,
and, in particular, rigid transformations in 3D, can be gen-
erated exactly if the corresponding transformed views are
known for the set of prototypes. Thus, if the training set con-
sists of frontal and rotated views of a set of prototype faces,
any rotated view of a new face can be generated from a single
frontal view—provided that the linear class assumption
holds. In this paper, we show that the technique, first intro-
duced for shape-only objects, can be extended to their gray-
level or color values as well, which we call texture.

Key to our approach is a representation of an object view
in terms of a shape vector and a texture vector (see [1] and
also Beymer [10] and Jones and Poggio [11]). The first gives
the image-plane coordinates of feature points of the object
surface; the second provides their color or gray-level. On
the image plane, the shape vector reflects geometric trans-
formation in the image due to a change in view point,
whereas the texture vector captures photometric effects,
often also due to viewpoint changes.

For linear object classes, the new image of an object of
the class is analyzed in terms of shape and texture vectors
of prototype objects in the same pose. This requires corre-
spondence to be established between all feature points of
the prototype images—both frontal and rotated—which can
be done in an off-line stage and does not need to be auto-
matic. It also requires correspondence between the new
image and one of the prototypes in the same pose, but does
not need correspondence between different poses as re-
quired in the parallel deformation technique of Poggio and
Brunelli [3] and Beymer et al. [2].

The paper is organized as follows: The next section for-
mally introduces linear object classes, first for objects defined
only through their shape vector. Later in the section, we
extend the technique to objects with textures and charac-
terize the surface reflectance models for which our linear
class approach is valid. Section 3 describes an implementa-
tion of the technique for synthetic objects for which the lin-
ear class assumption is satisfied by construction. In the last
section, we address the key question of whether the as-
sumption is a sufficiently good approximation of real ob-
jects. We consider images of faces and demonstrate prom-
ising results that indirectly support the conjecture that faces
are a linear class at least to a first approximation. The dis-
cussion reviews the main features of the technique and its
future extensions.

2 LINEAR OBJECT CLASSES

Three-dimensional objects differ in shape as well as in tex-
ture. In the following, we will derive an object representa-
tion consisting of a separate texture vector and a 2D-shape
vector, each one with components referring to the same
feature points, usually pixels, in principle, corresponding to
surface features. Assuming correspondence, we will repre-
sent an image as follows: We code its 2D shape as the de-

formation field of selected feature points—each corre-
sponding in the limit to a pixel—from a reference image
which serves as the origin of our coordinate system. The
texture is coded as the intensity map of the image with
feature points set in correspondence with the reference im-
age. Thus, each component of the shape and the texture
vector refers to the same feature point e.g., pixel. In this
setting, 2D shape and texture can be treated separately. We
will derive the necessary and sufficient conditions for a set
of objects to be a linear object class.

2.1 Shape of 3D Objects

Consider a 3D view of a three-dimensional object which is
defined in terms of pointwise features [6]. A 3D view can be
T .
represented by a vector X = (X, Y1, Z1, Xy «oors Yo Zn) » that is
by the x, y, z-coordinates of its n fea%ure points (we factor
out translation). Assume that X e R is the linear combi-
nation of q 3D views X; of other objects of the same dimen-
sionality, such that:

q
iXi (1)
; a

X =

X is then the linear combination of g vectors in a 3n-
dimensional space, each vector representing an object of n
pointwise features. Consider now the linear operator L as-
sociated with a desired uniform transformation such as, for
instance, a specific rotation in 3D. Let us define X' = LX, the
rotated 3D view of object X. Because of the linearity of the
group of uniform linear transformations £, it follows that

X' = iaix{ @)
1=1

Thus, if a 3D view of an object can be represented as the weighted
sum of views of other objects, its rotated view is a linear combina-
tion of the rotated views of the other objects with the same
weights. Of course, for an arbitrary 2D view that is a projec-
tion of a 3D view, a decomposition like (1) does not, in gen-
eral, imply a decomposition of the rotated 2D views (it is a
necessary but not a sufficient condition).

2.1.1 2D Projections of 3D Objects

The question we want to answer here is, “Under which
conditions do the 2D projections of 3D objects satisfy (1) to
(2)?”” The answer will clearly depend on the types of objects
we use and also on the projections we allow. We define:

DEFINITION. A set of 3D views (of objects) {X;} is a linear object
clasg under a linear projection P if dim{X;} = dim{PX;} with X;
e R and PX; e %" and p < 3n.

This is equivalent to saying that the minimal number of
basis objects necessary to represent an object is not allowed
to change under the projection. Note that the linear projec-
tion P is not restricted to projections from 3D to 2D, but
may also “drop” occluded points. Now assume x = PX and
X; = PX; are the projections of elements of a linear object
class with

X = i{ozixi 3)
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Then x" = PX' can be constructed without knowing X" using
a; of (3) and the given x;' = PX;" of the other objects

q
X = Z ax
=

These relations suggest that we can use “prototypical” 2D
views (the projections of a basis of a linear object class) and
their known transformations to synthesize an operator that
will transform a 2D view into a new 2D view when the ob-
ject is a linear combination of the prototypes. In other
words, we can compute a new 2D view of such an object
without explicitly knowing its three-dimensional structure.
Notice also that knowledge of the correspondence between
(3) and (4) is not necessary (rows in a linear equation sys-
tem can be exchanged freely). Therefore, the technique does
not require computing the correspondence between views
from different viewpoints. In fact, some points may be oc-
cluded. Fig. 1 shows a very simple example of a linear ob-
ject class and the construction of a new view of an object.
Taking the eight corners of a cuboid as features, a 3D view
X, as defined above, is an element of 9{24; however, the di-
mension of the class of all cuboids is only three, so any
cuboid can be represented as a linear combination of three
cuboids. For any projection that preserves these three di-
mensions we can apply (3) and (4). The projection in Fig. 1
projects all nonoccluded corners orthographically onto the
image-plane (x = PX e ERM) preserving the dimensionality.
Notice that the orthographic projection of an exactly frontal
view of a cuboid (an accidental view), which would result in
a rectangle as image, would preserve two dimensions only,
so (4) could not guarantee the correct result.

4)
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Fig.1. Learning an image transformation according to a rotation of
three-dimensional cuboids from one orientation (upper row) to a new
orientation (lower row). The “test” cuboid (upper row, right) can be
represented as a linear combination of the two-dimensional coordi-
nates of the three example cuboids in the upper row. The linear combi-
nation of the three example views in the lower row, using the coeffi-
cients evaluated in the upper row, results in the correct transformed
view of the test cuboid as output (lower row, right). Notice that corre-
spondence between views in the two different orientations is not
needed, and different points of the object may be occluded in the dif-
ferent orientations.
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Before applying this idea to gray-level images, we would
like to introduce a helpful change of coordinate systems in
(3) and (4). Instead of using an absolute coordinate system,
we represent the views as the difference of the view of a
reference object of the same class in terms of the spatial dif-
ferences of corresponding feature points in the images.
Subtracting both sides of (3) and (4), the projection of a ref-
erence object gives us

AX = z a.Ax: )

and
r d r (6)
AX = a.AX
2
After this change in the coordinate system, (6) now
evaluates to the new difference vector to the rotated refer-

ence view. The new view of the object can be constructed
by adding this difference to the reference view.

2.2 Texture of 3D Objects

In this section, we extend our linear space model from a
representation based on feature points to full images of ob-
jects. In the following, we assume that the objects are iso-
lated, that is, properly segmented from the background. To
apply (5) and (6) to images, the difference vectors between
an image of a reference object and the images of the other
objects have to be computed. Since the difference vectors
reflect the spatial difference of corresponding pixels in im-
ages, this correspondence has to be computed first. The
problem of finding correspondence between surface points
from two images, in general, is difficult, and outside the
scope of this paper. In the following, we assume that the
correspondence is given for every pixel in the image. In our
implementation (see next section), we approximated the
correspondence fields using a standard optical flow tech-
nique. For an image of n-by-n pixels, Ax in (5) and (6) are
the correspondence fields of the images to a reference im-

age with Ax e R

The computed correspondence between images enables
a representation of the image that separates 2D-shape and
texture information. The 2D-shape of an image is coded as a
vector representing the deformation field relative to a refer-
ence image. The texture information is coded in terms of a
vector which holds for each pixel the texture map that re-
sults from mapping the image onto the reference image
through the deformation field. In this representation, all
images—the shape vector and the texture vector—are vec-
torized relative to the reference image. Since the texture or
image irradiance of an object is, in general, a complex func-
tion of albedo, surface orientation, and the direction of il-
lumination, we have to distinguish different situations.

Let us first consider the easy case of objects all with the
same identical texture: Corresponding pixels in each image
have the same intensity or color. In this situation, a single
texture map (e.g., the reference image) is sufficient. As-
suming a linear object class as described earlier, the shape
coefficients o; can be computed (5) and result (6) in the cor-
respondence field from the reference image in the second
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Fig. 2. Gray level images of an artificial linear object class are rendered. The correspondence between the images of a reference object (dashed
box) and the other examples are computed separately for each orientation. The correspondence field between the test image and the reference
image is computed and linearly decomposed into the other fields (upper row). A new correspondence field is synthesized applying the coefficients
from this decomposition to the fields from the reference image to the examples in the lower row. The output is generated by forward warping the
reference image along this new correspondence field. In the difference image between the new image and the image of the true 3D model (lower
row, right), the missing parts are marked white, whereas the parts not existing in an image of the model are in black.

orientation to the new “virtual” image. To render the
“virtual” image, the reference image has to be warped
along these correspondence fields. In other words, the ref-
erence image must be mapped onto the image locations
given through the correspondence field. In Fig. 2, the
method is applied to gray level images of three-dimension-
al computer graphic models of five dog-like objects. The
“dogs” are shown in two orientations, and four examples of
this transformation, from one orientation to the other, are
given. Only a single test view of a different dog is given. In
each orientation, the correspondence from a chosen refer-
ence image (dashed box) to the other images is computed
separately (see also Section 3). Since the dogs were created
in such a way that the three-dimensional objects form a
linear object class, the correspondence field to the test im-
age could be decomposed exactly into the other fields
(upper row). Applying the coefficients of this decomposi-
tion to the correspondence fields of the second orientation
results in the correspondence of the reference image to a
new image, showing the test object in the second orienta-
tion. This new image (“output” in the lower row) was cre-
ated by simply warping the reference image along this cor-
respondence field, since all objects had the same texture.
Since, in this test, a three-dimensional model of the object
was available, the synthesized output could be compared to
the model. As shown in the difference image, there is only a
small error, which can be attributed to minor errors in the
correspondence step. This example shows that the method,
combined with standard image matching algorithms, is
able to transform an image in a way that shows an object
from a new viewpoint.

Let us next consider the situation in which the texture is
a function of albedo only, that is independent of the surface
normal. Then, a linear texture class can be formulated in a

way equivalent to (1) through (4). This is possible since the
textures of all objects were mapped along the computed
deformation fields onto the reference image, so all corre-
sponding pixels in the images are mapped to the same pixel
location in the reference image. The equation

Qo

t=Y Bt ()

[

with §; (different to o in equation (3)) implies
=Y Bt ®)

assuming that the appearance of the texture is independ-
ent of the surface orientation and the projection does not
change the dimensionality of the texture space. Here, we
are in the nice situation of a separate shape and texture
space. In an application, the coefficients ¢; for the shape,
and coefficients §; for the texture, can be computed sepa-
rately. In face recognition experiments [1], the coefficients
B; were already used for generation of “shape-free” vir-
tual views.

Fig. 3 shows a test of this linear approach for a separated
2D-shape and texture space in combination with the ap-
proximated correspondence. Three example faces are
shown, each from two different viewpoints according to a
rotation of 22.5°. Since the class of all faces has more than
three dimensions, a synthetic face image is used to test the
method. This synthetic face is generated by a standard
morphing technique [12] between the two upper left im-
ages. This ensures that the necessary requirements for the
linear class assumption hold, that is, the test image is a lin-
ear combination of the example images in texture and 2D-
shape. In the first step, for each orientation the correspon-
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Fig. 3. Three human example faces are shown, each in two orientations (the three left columns), one of these faces is used as reference face
(dashed box). A synthetic face, a “morph” between the two upper left images, is used as a test face to ensure the linear combination constraint
(upper right). The procedure of decomposing and synthesizing the correspondences fields is as described in Fig. 2. Additionally, all textures, for
each orientation separately, are mapped onto the reference face. Here, the test texture is decomposed into the other example textures. Using the
evaluated coefficients, a new texture is synthesized for the second orientation on the reference face. The final output, the transformed test face, is
generated by warping this new texture along the new synthesized correspondence field.

dence between a reference face (dashed box) and the other
faces is computed. Using the same procedure described
earlier, the correspondence field to the test image is decom-
posed into the other fields evaluating the coefficients o;.
Different from Fig. 2, the textures are mapped onto the ref-
erence face. Now the texture of the test face can be linearly
decomposed into the textures of the example faces. Apply-
ing the resulting coefficients f; to the textures of the exam-
ple faces in the second orientation (lower row of Fig. 3), we
generate a new texture mapped onto the reference face.
This new texture is now warped along the new correspon-
dence field. This new field is evaluated applying the coeffi-
cients ¢ to the correspondence fields of the examples to the
reference face in the second orientation. The output of this
procedure is shown below the test image. Since the input is
synthetic, this result cannot be compared to the true rotated
face, so it is up to the observer to judge the quality of the
applied transformation of the test image.

3 AN IMPLEMENTATION

The implementation of this method for gray-level pixel im-
ages can be divided into three steps.

< First, the correspondence between the images of the
objects has to be computed.

« Second, the correspondence field to the new image
has to be linearly decomposed into the correspon-

dence fields of the examples. The same decomposition
has to be carried out for the new texture in terms of
the example textures.

« Finally we synthesize the new image, showing the
object from the new viewpoint.

3.1 Computation of the Correspondence

To compute the differences Ax used in (5) and (6), which are
the spatial distances between corresponding points of the
objects in the images, the correspondence of these points
has to be established first. That means we have to find for
every pixel location in an image, e.g., a pixel located on the
nose, the corresponding pixel location on the nose in the
other image. This is, in general, a hard problem. However,
since all objects compared here are in the same orientation,
we can often assume that the images are quite similar, and
that occlusion problems are negligible. These conditions
make it feasible to compare the images of the different ob-
jects with automatic techniques. Such algorithms are
known from optical flow computation, in which points
have to be tracked from one image to the other. We use a
coarse-to-fine gradient-based method [13] and follow an
implementation described in [14]. For every point X, y in an
image |, the error term E = X(1,6x + 1,6y — 6I)2 is minimized
for ox, dy, with 1,, I, being the spatial image derivatives and
dl the difference of intensity of the two compared images.
The coarse-to-fine strategy refines the computed displace-
ments when finer levels are processed. The final result of



738 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 7, JULY 1997

this computation (dx, dy) is used as an approximation of the
spatial displacement (Ax in (5), and (6)) of a pixel from one
image to the other. The correspondence is computed in the
direction toward the reference image from the example and
the test images. As a consequence, all vector fields have a
common origin at the pixel locations of the reference image.

3.2 Learning the Linear Transformation

The decomposition of a given correspondence field in (5)
and the composition of the new field in (6) can be under-
stood as a single linear transformation. First, we compute
the coefficients ¢; for the optimal decomposition (in the
sense of least square). The correspondence field Ax to a new
object X is decomposed into the “example” correspondence
fields Ax; of the g given prototypes by minimizing

q 2

AX — z o, Ax; ©)

=%
=1

We rewrite (5) as Ax = ®@a, where @ is the matrix formed by
the g vectors Ax; arranged column-wise, and « is the col-
umn vector of the ¢; coefficients. Minimizing (9) gives

o = (@) Ax (10)

The observation of the previous section implies that the
operator L that transforms Ax into Ax' through Ax' = LAX, is
given by

L=0'®" (11)

and thus can be learned from the 2D example pairs

AX =®'a=®'® Ax as

(Axi,Ax{). In this case, a one-layer, linear network

(compare Hurlbert and Poggio [15]) can be used to learn the
transformation L. L can then transform a view of a novel
object of the same class. If the g examples are linearly inde-

pendent @ is given by @ = (@ ®) @' in the other cases
(9) was solved by an SVD algorithm.

Before decomposing the new texture into the example
textures, all textures have to be mapped onto a common
basis. Using the correspondence, we warped all images
onto the reference image. In this representation, the de-
composition of the texture can be performed as described
above for the correspondence fields.

3.3 Synthesis of the New Image

The final step is image rendering. Applying the computed
coefficients to the examples in the second orientation re-
sults in a new texture and the correspondence fields to the
new image. The new image can be generated combining
this texture and correspondence field. This is possible be-
cause both are given in the coordinates of the reference im-
age. That means that for every pixel in the reference image,
the pixel value and the vector pointing to the new location
are given. The new location generally does not coincide
with the equally spaced grid of pixels of the destination im-
age. A commonly used solution of this problem is known as
forward warping [16]. For every new pixel, we use the near-
est three points to linearly approximate the pixel intensity.

4 |s THE LINEAR CLASS ASSUMPTION
VALID FOR REAL OBJECTS?

For human-made objects, which often consist of cuboids,
cylinders, or other geometric primitives, the assumption of
linear object classes seems natural. However, are there
other object classes which can be linearly represented by a
finite set of example objects? In the case of faces, it is not
clear how many example faces are necessary to synthesize
any other face, and, in fact, it is unclear whether the as-
sumption of a linear class is appropriate at all. The key test
for the linear class hypothesis, in this case, is how well the
synthesized rotated face approximates the “true” rotated
face. We tested our approach on a small set of 50 faces, each
given in two orientations (22.5° and 0°). Fig. 4 shows four
tests using the same technique as described in Fig. 3. In
each case, one face was selected as the test face, and the 49
remaining faces were used as examples. Each test face is
shown on the upper left, and the output image produced by
our technique on the lower right, showing a rotated test
face. The true rotated test face from the data base is shown
on the lower left. We also show, in the upper right, the
synthesis of the test face through the 49 example faces in
the test orientation. This reconstruction of the test face
should be understood as the projection of the test face into
the shape and texture space of the other 49 example faces.
A perfect reconstruction of the test face would be a neces-
sary (not sufficient!) requirement that the 50 faces are a lin-
ear object class. The results are not perfect, but considering
the small size of the example set, the reconstruction is quite
good. In our experiments, even in the cases where human
observers judged the synthetic faces most different from the
original face images (see Fig. 5), the synthetic imagery looks
like a human face, and already shows some characteristics
of the target faces. In general, the similarity of the recon-
struction to the input test face allows us to speculate that an
example set size of the order of a hundred faces may be
sufficient to construct a huge variety of different faces. We
conclude that the linear object class approach may be a sat-
isfactory approximation, even for complex objects as faces.
On the other hand, it is obvious that the reconstruction of
every specific mole or wrinkle in a face requires an almost
infinite number of examples. To overcome this problem,
correspondence between images taken from different
viewpoints should be used to map the specific texture on
the new orientation [11], [1].

5 DiIscussION

Linear combinations of images of a single object have al-
ready been successfully used to create a new image of that
object [17]. Here, we created a new image of an object using
linear combinations of images of different objects of the
same class (see also [10], [1]). Given only a single image of
an object, we are able to generate additional synthetic im-
ages of this object under the assumption that the “linear
class” property holds. This is demonstrated not only for
objects purely defined through their shape but also for
smooth objects with texture.
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Fig. 4. Four examples of artificially rotated human faces, using the technique described in Fig. 3 are shown. Each test face (upper left) is “rotated”
by using 49 different faces (not shown) as examples, and the final results of the technique are marked as output. Only for comparison the “true”
rotated test face is shown on the lower left (this face was not used in the computation). The difference between synthetic and real rotated face is
due to the incomplete example set, since the same difference can already be seen in the reconstruction of the input test face using the 49 exam-
ple faces (upper right).
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Fig. 5. Four additional “worst case” examples of the test described in Fig. 4 are shown here. These images show examples where human observ-
ers judged the synthetic images to be most different to the original images of the persons. Each test face (upper left) is “rotated” using 49 different
faces (not shown) as examples. The results are marked as output.
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This approach, based on two-dimensional models, does
not need any depth information, so the sometimes difficult
step of generating three-dimensional models from two-
dimensional images is superfluous. Since no correspon-
dence is necessary between images representing objects in
different orientations, fully automated algorithms can be
applied for the correspondence finding step. For object rec-
ognition tasks, our approach has several implications. Our
technique can provide additional artificial example images
of an object when only a single image is given. On the other
hand, the coefficients, which result from a decomposition of
shape and texture into example shapes and textures give us
already a representation of the object which is invariant
under any 3D affine transformation.

In an application, our approach is confronted with two
types of problems. As in any approach based on flexible
models, there is the problem of finding the correspondence
between model and image. In our implementation we used
a general method for finding this correspondence. How-
ever, if the class of objects is known in advance, a method
specific to this object class could be used [11], [10]. In this
case, the correspondence field is linearly modeled by a
known set of deformations specific to that class of objects.

A second problem, specific to our approach, is the exis-
tence of linear object classes and the completeness of the
available examples. This is equivalent to the question of
whether object classes defined in terms of human percep-
tion can be modeled through linear object classes. Presently,
there is no final answer to this question, apart from simple
objects such as cuboids and cylinders where the dimen-
sionality is given through their mathematical definition.
The application of the method to a small example set of
human faces, shown here, provides preliminary promising
results. It is, however, clear that 50 example faces are not
sufficient to accurately model all human faces. Since our
linear model allows us to test the necessary conditions for
an image being a member of a linear object class, the model
can detect images where a transformation fails. This test
can be done by measuring the difference between the input
image and its projection into the example space, which
should ideally vanish.

Our implementation, as described in our examples, can
be improved by applying the linear class idea to independ-
ent parts of the objects. In the face case, a new input face
was linearly approximated through the complete example
faces, that is, for each example face a single coefficient (for
texture and 2D-shape separately) was computed. Assume
noses, mouths, or eyes span separated linear subspaces, then
the dimensionality of the space spanned by the examples will
be multiplied by the number of subspaces. So, in a new im-
age, the different parts will be approximated separately by
the examples, increasing the number of coefficients used as
representation, and also improving the reconstruction.

Several open questions remain for a fully automated im-
plementation. The separation of parts of an object to form
separated subspaces could be done by computing the co-
variance between the pixels of the example images. How-
ever, for images at high resolution, this may need thou-
sands of example images. Our linear object class approach
also assumes that the orientation of an object in an image is

known. The orientation of faces can be approximated com-
puting the correlation of a new image to templates of faces
in various orientations [18]. It is not clear how precisely the
orientation should be estimated to yield satisfactory results.
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