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Abstract

Recent work in the psychological literature has indicated that attractive faces are
in some ways “average” [1] and that the apparent age of a face can be related to its
proximity to the average of a computationally derived “face space” [2]. We examined
the relationship between facial attractiveness, age, and “averageness”, using laser
scans of faces that were put into complete correspondence with the average face [3].
This representation enabled selective normalization of the 3D shape versus the surface
texture map of the faces. Shape-normalized faces, created by morphing the texture
maps from individual faces onto the average head shape, and texture-normalized faces,
created by morphing the average texture onto the shape of each individual face, were
judged by human subjects to be both more attractive and younger than the original
faces. The study shows that relatively global, psychologically meaningful attributes

of faces can be modeled very simply in face spaces of this sort.
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1. Introduction

The relationship between human image perception and artificial image manipula-
tions is a central problem for many image processing applications. One aspect of this
problem concerns the relationship between some relatively global, but psychologically
meaningful perceptual descriptors of objects, and the image properties that underlie
these percepts. For example, human faces can be described in a number of global
ways that are likely to be the result of a combination or configuration of image based
features: e.g., “attractive”, “generous”, “mean-looking” or “thirty-something”. In
the present study, we focus on understanding two of these dimensions in ways that
will allow us to change images selectively along the specific perceptual dimensions
while keeping other dimensions constant (e.g. to beautify or age a face image with-
out changing the identity of the person). One application of this approach is to the
problem of image search in databases, for which the mapping of human image de-
scriptions onto formal image representations can substantially increase the efficiency
of the search.

There is good evidence in the literature that at least one component of being
“attractive” is related to being “average”[1]. The primary psychological evidence for
this claim comes from a study showing that “composite images” made by averaging
together the faces of several individuals are judged by human subjects to be more
attractive than the original unaveraged faces. Although controversial for a number

of technical [4, 5, 6, 7], and theoretical [8, 9] reasons, which we discuss below, the
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attractiveness of “average” faces is an interesting result both for psychological and
computational models of face recognition.

As has been discussed in great detail elsewhere, the attractiveness of averages
versus extremes has important implications for theories of mate selection based on
evolutionary biology [4, 10, 1, 8, 11, 12, 13]. Much less considered, however, are the
implications of this finding for human memory or more precisely for understanding
the “recognizability” of average faces. By recognizability we mean simply the accu-
racy with which a face can be correctly recognized when seen before, and correctly
judged “novel” when it has not been seen before. In fact, psychological work has in-
dicated, somewhat counterintuitively, that attractive faces are recognized by human
subjects less accurately than are unattractive faces [14]. These findings [5, 14, 11]
link facial attractiveness to very well-established findings relating the perceived typi-
cality /distinctiveness of a face and its recognizability, e.g., [15, 16]. People recognize
typical or “average” faces less accurately than distinctive faces. This phenomenon
has important implications for the expected accuracy of eyewitness identifications for
individual faces. Simply put, some faces are more likely to be falsely recognized than
others, and so, the credibility of eyewitness identifications will vary systematically
with the typicality and attractiveness of the face to be identified.

One unexplored application of computational models of face recognition concerns
the ability to predict the accuracy with which human subjects will recognize individ-
ual faces, i.e., predict which faces humans will identify correctly and which faces may

generate identification errors. Quantifying the information that makes a face attrac-
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tive or typical, thus, has possible applications to this problem. The problem, however,
poses challenges for computational models of face recognition for two reasons. First,
it is likely that the information that makes a face either typical or (non-equivalently)
attractive is related, at least in part, to the configuration of features in a face, rather
than exclusively to any single feature [9]. Second, both of these facial attributes make
implicit reference to a population of faces. For example, faces are likely to be consid-
ered typical or attractive relative to a reference group that may involve the sex, race,
and age of a face [17].

A computational model for manipulating the attractiveness or distinctiveness of
a face in ways that are perceptually salient for human subjects should, therefore, be
sensitive to the statistical structure of a set of faces. Such a model should also be based
on a representation in which the configural structure of a face can be manipulated in a
global and relatively natural way. A “face space” respresentation, commonly used in
both the psychological [18] and the computational literatures [19, 20, 2, 21, 22] meets
these requirements. In its generic form a face space entails the following notions: 1.)
faces can be thought of as points in a multidimensional space; 2.) the axes of this
space represent a set of features on which the faces are encoded; and 3.) the distance
between any two faces in this space is a measure of the similarity between the faces,
cf., [23, 18].

In the more quantitative literature, face spaces are typically implemented by using
principal components analysis (PCA) [19, 20, 21, 22] of a covariance matrix made

using a set of face images. This yields a set of feature axes (principal components,
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PC’s), which are derived directly from the statistical structure of the set of faces.
Individual faces are points/vectors in this space and thus can be described by their
coordinates in the space, or in other words, by their values on each “feature axis” or
PC. Finally, it is worth noting that when PCA is applied to a physical measure of
faces, such as pixels, surface values, or fiducial point location codes!, the resultant PCs
are of the same form and the faces can be expressed as weighted linear combinations
of these “features” /PC’s. As such, alterations to faces that are made by operating on
their coordinates in this space can be viewed (if they are image-based), constructed
(if they are surface based), or synthesized (if they are derived from a fiducial code, or
other code in which the faces are represented in a comparable, corresponded /aligned
coordinate system, [24, 3]). A primary question in the psychological literature over
the past few years concerns the kind of representation (e.g., image, surface or some
combination) that is best for modeling human perception and memory for objects
and faces (cf. [25, 26]).

It has been posited in the psychological literature that the distinctiveness of a
face is related to its distance from the average face in a generic face space [18]. In
fact, this is the primary manipulation used by most automatic caricature generators
that operate in quantitatively-based face spaces. The goal of a caricature generator
is to increase the “distinctiveness” of a face by exaggerating features that help to

differentiate the face from other faces, e.g., [27, 28]. More formally, automatic car-

!Fiducial point codes comprise the locations of a set of facial landmarks, e.g., corners of the eyes.
The number and variety of encoded fiducial points can vary widely across different applications.
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icatures usually work as follows. First, a measure of the average value of a set of
“features” across a large number of faces is computed. These features are defined,
usually, as a set of facial landmark locations or “fiducial points” (e.g., corners of the
eye and other points that are reasonably easy to localize/match on all faces). It is
worth noting that this is a representation of the two-dimensional configural structure
of the face because it captures the spatial layout of the facial features in the projected
two-dimensional facial image. Next, to create a caricature of an individual face, a
measure of the deviation of the face from the average two-dimensional configuration
is computed. Finally, “distinctive” or unusual features of the face are exaggerated
and the face is redrawn with the exaggerated features to produce the caricature. The
basic manipulation of an automatic caricature-generator, therefore, is to “move” the
face away from the center of a face space based on the two-dimensional (projected)
configural stucture of a face.

In recent years, computational face spaces have been used by psychologists to ask
questions about the nature of human representations of faces. The logic behind this
approach is straightforward. Computational face spaces derived from different kinds
of face representations (two-dimensional pixel-based images [19, 20, 21, 22|, three-
dimensional surfaces from laser scans [24]) may make different predictions about the
similarity /confusability of faces. More formally, the distance between two faces in a
face space based on two-dimensional pixel-based images may be very different than
the distance between faces in a three-dimensionally-based face space. It is possible

then to test hypotheses about human representations of faces by varying the nature
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of the features used to create computational face spaces and by using psychological
data to evaluate the adequacy of different face space representations as models for
human perception and memory.

Before proceeding, it is worth illustrating briefly that computationally derived
face spaces can differ both quantatively and qualitatively in the predictions they make
about perceptual variations in facial appearance. For example, recent work illustrates
that the application of an automatic caricature algorithm to faces represented by their
three-dimensional structure alters the age of a face more than its distinctiveness [2],
(see Figure 1).? In that study, faces were represented as vectors in a PCA-based face
space derived from a low level encoding of the three-dimensional head structure. The
caricature algorithm operated as follows: a.) a face vector in this space was multiplied
by a scalar, x, (z > 1 yields a caricature; z < 1 yields an anti-caricature);® and b.)
the caricature was created by recombining the PC’s/eigenheads according to their
new coordinates. Using this representation, it is clear that the direction of the face
(vector) in this space represents the identity of the face. All of the faces pictured in
Figure 1 are actually on the line that connects the average face to the veridical face
(and continues). As can be seen, all the faces retain the identity of the original. The
face in the first row is the actual head scan of a 26 year old male. The three faces in
row 2 are increasing levels of caricature. Here it can be seen that the distance from

the average, i.e. the length of the vector, represents its distinctinctiveness, and in

2Tt is worth noting also that the averaged faces in [6] appeared younger than the veridicals.
3Note that because the face space was based on 3D deformation fields, which we discuss shortly,
the origin of this space was the average face.
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this particular case, its age as well [2].

Figure 1: Three-dimensional caricatures of a 26 year old male (row 1). Increasing
the level of exaggeration, i.e., distance from the mean in the face space, increases the
apparent age of the face (row 2: left to right).

A generic caricature applied to a computationally derived face space based on a
three-dimensional representation of faces produced a very salient change in the age
of faces. Applied to a two-dimensional configural representation of faces, a similar
trajectory in the face space produced more salient changes in the distinctiveness of
faces. Thus, when implementing simple algorithms for manipulating the appearance
of faces, the nature of the features underlying the face space has important perceptual
consequences.

In the present study, we explored the question of quantifying and manipulating

facial attractiveness and age in the context of the average(s) of a physical face space.
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Additionally, we have based the face space on a more complete representation of
faces than has been used previously. The representation combines both the three-
dimensional stucture of the faces and the overlying two-dimensionally based texture
map. An example laser scan stimulus appears in Figure 2, with the combined surface
and texture map rendered from the front, the pure surface map in the center, and the
texture map on the right. Further, in our representation, the faces are in complete
correspondence with each other, i.e., are aligned so that the positions of the discrete
features overlap [3]. We describe this procedure shortly. For present purposes, this
approach overcomes two shortcomings of the averaging manipulation used to make
composite faces, c.f., [4, 5, 6, 7]. These shortcomings confound the nature of the

information being manipulated.

Figure 2: Laser scan data, three-dimensional structure and texture combined and
rendered from the front (left), three-dimensional head surface data (middle) and
texture map (right).

The first shortcoming is that the composite procedure allows for the possibility of
blurring out facial blemishes and other small imperfections in the face when averaging
faces. This might provide an alternative explanation for the results reported in [1],

(though see also [5, 6, 11]). The second shortcoming relates to the first but concerns
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the more general problem of blurring as it affects the alignment of facial features prior
to the averaging. Specifically, in simple arithmetic averaging, the exact positions of
the features (eyes, etc.) are not aligned prior to the averaging procedure, and hence,
may be blurred in the final averaged face image.

In the present study, we used an automated “correspondence” algorithm applied
simultaneously to both the two-dimensional and three-dimensional information from
laser scans of human faces [3]. Using this representation we were able to ask more
precise questions about the relationship between “averageness” and the perceived
attractiveness of human faces. The purpose of a correspondence algorithm in this
context is to put all faces into a comparable coordinate system before “moving them”
toward the average. Finding a common coordinate system in morphing and auto-
mated caricature generator procedures [27, 29] is done usually by a human operator
who hand-locates between 50-300 fiducial (and supplemental) points on the face, prior
to warping and interpolating. For example, the lower lip of a face might be repre-
sented by the locations of 12 points, the left and right corners of the mouth and 10
equally spaced intervening points.

The automated correspondence algorithm used in this study casts the matching
problem into its more general computer vision form in which one attempts to match
all of the data points in two images/surfaces, rather than just a subset of the fiducial
points. This is the approach taken most commonly in solving the classical correspon-
dence problems in stereopsis and motion analyses. Although this problem is far from

solved in a perfectly general form, a great deal of progress has been made recently on
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the problem with faces. Specifically, several methods based on elaborated optic flow
algorithms [30] have been applied successfully to the task of automating a correspon-
dence finding procedure for images of human faces [31, 32, 33]. These approaches
have been extended successfully to laser scan data for human heads [3]. Full details
of how the correspondence algorithm works can be found in [34, 3] and an outline of
the implementation details for this paper are summarized in Appendix A.

For present purposes, each face is represented as a “deformation field” from the
average, which can be divided into the parts/subspaces based on : a.) the three-
dimensional head structure from the laser scan; and b.) the overlying two-dimensional
surface texture, which is mapped point-for-point onto the head surface [34, 3].* In
short, what is represented from each individual face is how it differs from the average
in terms of its two-dimensional texture and three-dimensional shape.

This fully corresponded representation of the combined surface and texture in-
formation enables us to address the shortcomings of the composite approach in a
straightforward and complementary way. A face can be moved toward the average
by simply drawing a line between the face and the average and then “moving” the
face toward the average, reconstructing it at its new coordinates (i.e., combining the
PC’s linearly using the new coordinates as weights). Thus, the problem of blurring

blemishes and small imperfections can be solved by moving the face within the sub-

“We wish to note here that the use of the term “two-dimensional” with the surface texture
should be qualified somewhat. Although the information captured in the texture is inherently two-
dimensional, due to the fact that the laser scanner uses ambient light, the texture is normally viewed
wrapped around a head surface, from a specific viewpoint, and under specific lighting conditions.
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space defined only by the face shapes, leaving the original texture in tact.® Likewise,
the shape can be retained and the surface image texture can be moved toward the
average.

More formally, we created shape-normalized faces by morphing the texture maps
from individual faces onto the average head shape and texture-normalized faces by
morphing the average texture onto the shape of each individual face. In a face space
model based on the shape and texture deformation fields of faces, the average face lies
at the origin of the space. These normalization procedures, therefore, amount to a
simple operation of zero-ing out the face’s coordinates in the subspace corresponding
to the either the texture or shape of the face. Samples of these stimuli appear in
Figure 3. The left column contains two normal faces, the middle column contains
the shape-normalized versions of the faces and the right column shows the texture-
normalized versions of the faces.

A final question we considered in the present study concerns whether the per-
ceived age of a face decreases as the face is moved toward the average/center of the
face space. Suggestions to this effect have been reported previously [6] for the com-
posite procedure. In that study, averaged faces appeared younger than their originals.
The authors however did not find a correlation between the attractiveness and esti-

mated age of the unaveraged faces.® The work with three-dimensional representations

5 Although previous work [11] has suggested that these blemishes cannot provide a full account of
the effects reported in [1], that study used line drawings as the control for blurring and so a number
of additional features of the image may also have altered.

SThough it should be noted that there was only minimal age variability in the faces used there
and hence it may not have been possible with such a small range to detect a correlation.
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Figure 3: Original face (left), three-dimensional, shape-normalized (middle) and
texture-normalized (right), female and male faces.

has also indicated that moving faces toward the center of a face space has a rather
dramatic effect on the apparent age of a face [2].

The purpose of the present study was very straightforward. We wished to measure
the relative contributions of three-dimensional shape averaging versus two-dimensional
texture averaging to the findings that one component of attractive faces is related to
being average. We also wished to examine explicitly, the contribution of “de-aging”
to the effect. In the first experiment, we asked human subjects to judge the at-
tractiveness of the original, shape-normalized, and texture-normalized faces. These
judgments were supplemented in Experiment 2 with estimates of the ages of the origi-
nal and altered faces. Finally, we applied partial correlation techniques to the problem
of assessing the independence of the effects of shape- and texture normalization on

the age and attractiveness of faces.
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2 The Stimuli

2.1 Description of Laser Scanned Heads. Laser scans (CyberwareTM) of 100 heads
of young adults (50 male and 50 female) comprised the stimulus data base. The mean
age of faces in the data base was 26.9 years (standard deviation = 4.7 years). The
subjects were scanned wearing bathing caps, which were removed digitally. The laser
scans provided surface map data consisting of the lengths of 512 x 512 radii from
a vertical axis centered in the middle of the subject’s head to “sample” points on
the surface of the head. This is a cylindrical representation of the head surface,
with surface points sampled at 512 equally-spaced angles around the circular slices
of the cylinder, and at 512 equally spaced vertical distances along the long axis of
the cylinder. Additionally, further pre-processing of the heads was done by making a
vertical cut behind the ears, and a horizontal cut to remove the shoulders. A subset
of 48 (24 male and 24 female) was selected randomly from this data base to serve as
stimuli in the experiments reported here.

2.2 The Correspondence Problem. The procedures applied to solving the corre-
spondence problem for this particular set of laser scan stimuli are complex but the
basic principles have been described in detail elsewhere [34, 3]. Additionally, to make
this manuscript self-contained, we describe the implementation details of the algo-
rithm in Appendix A.” For present purposes, the basic idea is to match the data
points in each individual face with the corresponding feature points in the average

face, with the goal of representing each face as a “deformation” field from the average.

7A version of this appendix appears also in [35].
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Thus each data point in the face representation contains a pointer to the analogous
data point in the average. This was done by applying optic flow algorithms optimized
in this case to deal with the continuous surface and texture data found in faces [34].

2.3 Three-dimenstonal Shape and Two-dimensional Texture Normalization. Three
sets of faces were made from these original laser scans. Two sets of stimuli were made
from the original surface and texture maps of 48 faces. Texture-normalized faces
were created by wrapping the average texture map onto the surface map of each
individual face. Shape normalized faces were made by mapping the texture maps of
each individual face onto the average shape. Each resulting face was rendered from

the frontal viewpoint (cf., Figure 3).

3 Fxperiment 1 - Facial Attractiveness

3.1 Procedure. Thirty-six volunteers (17 male and 19 female) from the University
of Texas at Dallas (UTD) participated in this experiment. Most of these volunteers
were undergraduate students compensated with a research credit for a core course in
the psychology curriculum. Observers read instructions which indicated the purpose
of the experiment and were told to rate the attractiveness of each face presented to
them on a scale of 1 - 5, with 1 being least attractive and 5 being most attractive. Each
subject viewed the full set of 144 (normal, shape-normalized, and texture-normalized
versions of each of the 48 individual faces). The face remained visible until an attrac-
tiveness rating was given. The experiment was conducted on a Macintosh computer

programmed using PsyScope [36].
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3.2 Results. The mean attractiveness ratings for each subject on each type of
face were computed. These data appear in Figure 4. As indicated by the figure,
attractiveness ratings were highest for the shape-normalized faces, followed by the
texture-normalized faces and then the normal faces. These data were submitted to
a three-factor analysis of variance with face type and face gender as within-subjects
independent variables and subject sex as a between- subjects variables. We found a
main effect of face type, F'(2,68) = 134.24, p < .0001. No other factors or interactions
approached significance.

3.3 Discussion. These results indicate clearly that the normalizing the faces with
respect both to their three-dimensional structure and their two-dimensional texture
increased the attractiveness of faces. This replicates the principal findings of [1] and
extends them in several ways. First, the shape-normalization affected the attractive-
ness more than did the texture normalization. The fact that the shape-normalized
faces, which retain their image-based blemishes and imperfections, were considered
more attractive than the originals indicates that the “blurring” of small imperfections
in the face images cannot account entirely, or even primarily, for the previous results.
In fact, the shape-normalized faces which retained their image-based imperfections
were considered more attractive than the texture-normalized faces.

Next, both our human subjects and ourselves noticed spontaneously that the
normalized faces seemed to appear younger than the originals (cf. also [6]). In
Experiment 2, we examined this question formally by collecting age estimates on

the normal, shape- and texture-normalized faces which we could then relate to the
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Figure 4: Attractiveness ratings for the normal (left), shape-normalized (middle) and
texture-normalized (right) faces.

attractiveness ratings collected in Experiment 1.
4 Experiment 2 - Age Estimation

4.1 Procedure. Twenty-eight volunteers (15 female 13 male) participated in this
phase of the experiment. Observers were assigned to one of three groups to estimate
the ages of normal, shape-normalized or texture normalized faces. They did this by
typing in an age estimate on the computer keyboard. The face remained visible until
the estimate was made. Due to the more demanding and time consuming nature of
this phase of the experiment we counterbalanced the testing such that each subject
saw only one group of faces (normal, texture-normalized, or shape-normalalized) and
judged the age for each face in that particular set.

4.2 Resulls. The mean age estimate ratings for each subject on each face were

computed and divided according to the face type rated. These data appear in Figure
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5 and indicate that age estimates for both the shape- and texture-normalization were
younger than for the normal faces. Shape-normalization decreased the apparent age
of the face by about 4 years and texture-normalization decreased the apparent age
by about 3 years. The pattern of effect is similar to that seen for the attractiveness
ratings, with the shape-normalized faces judged youngest, the texture-normalized
next, and the originals judges oldest. More formally, these data were submitted to
a three-factor analysis of variance with face sex as a within-subjects independent
variable and face type and subject sex as between- subjects variables. We found a
main effect of face type, F/(2,22) = 3.38,p < .05, with age estimations decreasing
from normal to texture-normalized to shape-normalized. The sex of the face was also
significant, F'(1,22) = 45.41,p < .0001, however, this could be due to the actual age
variation between males and females in the group of faces presented. No other factors

or interactions proved significant.

5 Combined Analysis - Attractiveness and Age

The results of Experiment 2 indicated that both the shape and texture normal-
ization manipulations decreased the apparent age of the faces. Given that these
manipulations also increased the attractiveness of the faces, and that the pattern of
these effects were similar, we were interested in assessing the extent to which the
de-aging effect could account for the increased attractiveness.

To determine this we applied a partial correlation technique to the combined data

from Experiments 1 and 2. This worked as follows. For each face, we used the age
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Figure 5: Age estimates for the normal (left), shape-normalized (middle) and texture-
normalized (right) faces.

estimates supplied by the human subjects for individual faces in Experiment 2 as a
predictor for the attractiveness judgments supplied by the subjects in Experiment
1. The error of these estimates (the residuals) were then analyzed with an ANOVA,
using face rather than subject as the unit of measure. The pattern of means for the
residuals, with the age component partialed out, was the same as that seen for the raw
data, with the shape-normalized faces judged most attractive, the texture-normalized
faces next, and finally the original faces. Face type was again statistically significant,
F(2,92) = 47.42,p < .0001, indicating that even taking into account the de-ageing
effects of the manipulations, the attractiveness of the faces was increased by moving

them toward the average.
6 General Discussion

The relationship between human image perception and artificial image manipula-
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tions is a central problem for many image processing applications. An understanding
of this will allow us to change images selectively along even relatively abstract specific
perceptual dimensions. For the problem of image search in databases, the mapping
of human image descriptions onto formal image representations can increase the effi-
ciency of the search.

In the present study, we used a computationally defined face space based on
a representation of the how faces differ in their three-dimensional shape and two-
dimensional texture from the average face. Our primary manipulation consisted of
altering the length of the face vectors in a selected subspace of the general face
space. This manipulation is opposite to that carried out normally in automated
caricature generators. Faces increased in attractiveness and decreased in apparent
age with shape or texture normalization. Additionally, we showed that although the
normalization procedure simultaneously affects both the age and attractiveness of the
faces, the perception of these two facial attributes was not synonymous.

We think these results are important for three reasons. First, although there
is much data in the psychological literature to suggest that humans process faces
configurally rather than as a set of features, computational models have not always
considered representational systems in this light. Altering the global information in
faces in ways that change psychologically meaningful facial attributes like attractive-
ness and typicality /distinctiveness can be done very simply using an appropriate face
space representation. In this work, increasing the attractiveness of faces can be seen

as a kind of inverse operation to caricaturing, instead of increasing the distance of an
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individual face to the average we replace parts of the face representation by average
values.

Second, the present results help to clarify the relationship between some relatively
abstract attributes of faces that are of some consequence for understanding human
memory for faces. To recognize a face, one needs to encode the information that
makes it different from all other faces in the world. Faces vary, however, in the extent
to which they differ from other faces in the world. The present results indicate that
there is a relationship between the attractiveness of faces and their closeness to the
average face. Previous work has indicated that these shape- and texture-normalized
faces are recognized by human subjects less accurately than are the original faces [35].

Third, where age is concerned, the results further clarify the importance of pay-
ing careful attention to the nature of the underlying face space representation. In a
purely three-dimensionally based face space, age was the primary perceptual corre-
late for face vector length [2]. Using a combination of the texture and shape, both
attractiveness and age related to vector length, with the age component being far less
potent here than it was for a purely three-dimensional representation of faces [2].

Finally, we wish to note clearly that although “average” is in some ways attrac-
tive, the present results do not suggest that it is the only source of attractiveness.
Many previous studies have shown convincingly that atypical aspects of faces can be
perceived as attractive, most notably [8]. The present work shows only that at least
some aspects of the averageness of faces can be linked reliably to the attractiveness

and age of faces. Combined with other data on the recognizability of these shape
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and texture-normalized faces [35], it links a global face descriptor that humans use

quite comfortably, i.e., attractiveness, to the accuracy of human memory for faces.

It would be of great interest to see if this kind of global measure would be equally

useful for predicting the performance of computational models of face recognition at

the level of individual faces.
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Appendix: 3D Correspondence Algorithm

In order to construct a general flexible 3D face model that allows for computing an
average face as well as for exchanging shape and texture between different faces, it is
crucial to establish correspondence between a reference face and each individual face
example. For all vertices of the reference face, we have to find the corresponding vertex
location on each face in the dataset. If, for example, vertex j in the reference face is
located on the tip of the nose, with a 3D position described by the vector components
X;,Y;, Z; in S, ¢, then we have to store the position of the tip of the nose of face ¢ in
the vector components X;,Y;, Z; of S;. In general, this is a hard problem, and it is
difficult to formally specify what correct correspondence is supposed to be. However,
assuming that all face data sets are roughly aligned and that there are no categorical
differences such as some faces having beards and others not, an automatic method is
feasible for computing the correspondence (the algorithm is described in more detail
in [34, 3]).

For matching points on the surfaces of two three-dimensional objects we modified
an existing optical flow algorithm developed for two-dimensional images.

Optical Flow Algorithm. In video sequences, in order to estimate the velocities of
scene elements with respect to the camera, it is necessary to compute the vector field
of optical flow, which defines the displacements (dz,dy) = (x2 — z1,y2 — y1) between
points p; = (x1,y1) in the first image and corresponding points ps = (x2,y2) in the
second image. A variety of different optical flow algorithms have been designed to

solve this problem (for a review see [37]). Unlike temporal sequences taken from
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one scene, a comparison of images of completely different scenes or faces may vio-
late a number of important assumptions made in optical flow estimation. However,
some optical flow algorithms can still cope with this more difficult matching problem,
opening up a wide range of applications in image analysis and synthesis [31].

In a previous study [33], we computed correspondence between face images using
a coarse-to-fine gradient-based method [38] applied to the Laplacians of the images
and followed an implementation described in [30]. The Laplacian of the images were
computed from the Gaussian pyramid adopting the algorithm proposed by [39]. For
every point x, y in an image /(z,y), the algorithm attempts to minimize the error term
E =3 (1,6z+ 1,6y —61)* for dx, 8y, with I, I, being the spatial image derivatives of
the Laplacians and §1 the difference of the Laplacians of the two compared images.
The coarse-to-fine strategy starts with low resolution images and refines the computed
displacements when finer levels are processed. The final result of this computation
(dx, dy) is used as an approximation of the spatial displacement of each pixel between
two images.

Three-dimensional Face Representations. The extension of this optical flow al-
gorithm to the three-dimensional head data is straightforward due to the fact that
the cylindrical representation of a head surface is analogous to images: Instead of
grey-level values in image coordinates z,y, here we store the radius values and the
color values for each angle ¢ and height 2. A parameterization of a three-dimensional
head in cylindrical coordinates, therefore, consists of two ‘images’, one representing

the geometry of the head and the other containing the texture information. In order
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to compute the correspondence between different heads, both texture and geometry
were considered simultaneously. The optical flow algorithm as described earlier had
to be modified in the following way. Instead of comparing a scalar grey-level function
I(z,y), our modification of the algorithm attempts to find the best fit for the vector

function

radius(h, )
red(h, ¢)

green(h, @)
blue(h, o)

ﬁ(h7¢) =

radius
red I
green

blue

in a norm ||

= w; - radius® + wy - red® + ws - green® + wy - blue®.

The coefficients wy...w4 correct for the different contrasts in range and color values,
assigning approximately the same weight to variations in shape as to variations in all
color channels taken together.

For representing the geometry, radius values can be replaced by other surface
properties such as Gaussian curvature or surface normals.

The displacement between corresponding surface points is captured by a corre-

spondence function

cwa-(24:3)

Interpolation in low-contrast areas. 1t is well known that in areas with no contrast

or with strongly oriented intensity gradients, the problem of optical flow computation
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cannot be uniquely solved based on local image properties only (aperture problem).
In our extension of the algorithm to surfaces of human faces, there is no structure to
define correct correspondence on the cheeks, along the eyebrows and in many other
areas, and indeed the method described so far yields spurious results there.

The ambiguities of correspondence caused by the aperture problem can be resolved
if the flow field is required to be smooth.

In our algorithm, smoothing is performed as a separate process after the esti-
mation of flow on each level of coarse-to-fine approach. For the smoothed flow
field (6h'(h,¢),0¢'(h,¢)), an energy function is minimized using conjugate gradi-
ent descent such that on the one hand, flow vectors are kept as close to constant
as possible over the whole domain, and on the other hand as close as possible to
the flow field (6h(h, ), d¢(h, ¢)) from the computation described above. The first
condition is enforced by quadratic potentials that increase with the square distances
between each individual flow vector and its four neighbours. These interconnections
have equal strength over the whole domain. The second condition is enforced by
quadratic potentials that depend on the square distance between (6h'(h, ¢),d¢'(h, ¢))
and (0h(h,¢),d¢(h,d)) in every position (z,y). These potentials vary over the pa-
rameter domain. If the gradient of colour and radius values, weighted in the way
described above, is above a given threshold, the coupling factor is set to a fixed, high
value in the direction along the gradient, and zero in the orthogonal direction. This
allows the flow vector to move along an edge during the relaxation process. In areas

with gradients below threshold, the potential is vanishing, so the flow vector depends
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on its neighbours only.

After all individual faces of the training set have been matched to a reference face,
the average three-dimensional shape as well as the average surface texture map can
be computed. Additionally, correponding values of surface texture of different faces

can be exchanged.
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