
A Closest Point Proposal for MCMC-based
Probabilistic Surface Registration

Dennis Madsen?, Andreas Morel-Forster?, Patrick Kahr, Dana Rahbani,
Thomas Vetter, and Marcel Lüthi
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Abstract. We propose to view non-rigid surface registration as a prob-
abilistic inference problem. Given a target surface, we estimate the pos-
terior distribution of surface registrations. We demonstrate how the pos-
terior distribution can be used to build shape models that generalize
better and show how to visualize the uncertainty in the established cor-
respondence. Furthermore, in a reconstruction task, we show how to
estimate the posterior distribution of missing data without assuming a
fixed point-to-point correspondence.

We introduce the closest-point proposal for the Metropolis-Hastings al-
gorithm. Our proposal overcomes the limitation of slow convergence com-
pared to a random-walk strategy. As the algorithm decouples inference
from modeling the posterior using a propose-and-verify scheme, we show
how to choose different distance measures for the likelihood model.

All presented results are fully reproducible using publicly available data
and our open-source implementation of the registration framework.

Keywords: Probabilistic registration, Gaussian Process Morphable Model,
Metropolis-Hastings Proposal, Point Distribution Model

1 Introduction

The ability to quantify the uncertainty of a surface registration is important in
many areas of shape analysis. It is especially useful for the reconstruction of par-
tial data, or for the analysis of data where the exact correspondence is unclear,
such as smooth surfaces. Within the medical area, the uncertainty of a partial
data reconstruction is needed to make informed surgical decisions [27]. Uncer-
tainty estimates can also be used to build better generalizing Point Distribution
Models (PDMs) by assigning an uncertainty measure to each landmark [20,12].

In this paper, we propose an efficient, fully probabilistic method for surface
registration based on Metropolis-Hastings (MH) sampling. Efficiency is gained
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by introducing a specialized proposal based on finding the closest points be-
tween a template and a target mesh. With this, we benefit from the geometry-
aware proposal, while at the same time obtaining an uncertainty estimate for
the registration result. We formulate the non-rigid surface registration problem
as an approximation of the posterior distribution over all possible instances of
point-to-point correspondences, given a target surface. With this approach, the
registration uncertainty is the remaining variance in the posterior distribution.
We use the MH algorithm to sample surface registrations from the posterior
distribution. Our method can escape local optima and aims to capture the full
posterior distribution of registrations.

Our method improves on previous works in the literature in different ways.
In [28,17], the MH algorithm is used to estimate the uncertainty in non-rigid
registration. These papers are working on the image domain, and are not trans-
ferable to the surface registration setting. MH has also been used in [21] to fit an
Active Shape Model to images and in [30] to fit a Morphable Face Model to an
image, both of which only make use of the framework to avoid local optima and
to easily integrate different likelihood terms. The main problem with the MH
algorithm is the commonly used random-walk approach, which suffers from very
long convergence times when working in high-dimensional parameter spaces. To
overcome this problem, informed proposal distributions can be designed to per-
form directed sample updates. In [16], a Bayesian Neural Network is learned to
produce informed samples for the MH framework in the case of 3D face recon-
struction from a 2D image. This, however, requires training a neural network
for each class of shapes to be registered. In [14], local random-walk is combined
with an image-dependent global proposal distribution. This image dependent
distribution is, however, not directly transferable to the problem of surface reg-
istration. We perform registration by warping a single template mesh to a target
surface. No training data is required with our method, whereas most state-of-
the-art neural-network-based non-rigid registration methods require thousands
of meshes in correspondence for training [6,10]. These methods work well for
newer non-rigid registration challenges such as the FAUST dataset [4], where
the focus is to learn shape articulation from a training dataset. This is not
something we would advocate using our method for. Our method targets set-
tings with no, or limited, available training data and adds to existing methods
by providing an uncertainty measure, which is especially important within the
medical domain.

Even though newer registration methods exist, Iterative Closest Point (ICP)
and Coherent Point Drift (CPD) are still most commonly used for surface regis-
tration scenarios without available training data.2 The ICP algorithm was orig-
inally developed for rigid alignment of point sets [5,3]. ICP iteratively estimates
the point-to-point correspondences between two surfaces and then computes a
transformation based on the established correspondence. Finally, this transfor-
mation is applied to the reference surface. The algorithm has later been modified

2 In this paper, we focus on non-rigid registration. We, therefore, refer to their non-
rigid versions whenever ICP or CPD is mentioned.
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for non-rigid surface registration [7]. In general, standard ICP is very efficient
and produces good results. However, a bad initialization may lead the algorithm
to local optima from which it is unable to recover. Moreover, it is impossible
to estimate the correspondence uncertainty of the registration result. Multiple
extensions have been proposed to make the algorithm more robust in scenar-
ios such as missing data or large articulation deformation differences [1,13,25].
In [18], the ICP method is improved using Simulated Annealing and MCMC.
Their method is a robust version of the ICP algorithm, which can find the global
optimal rigid registration of point clouds. They do not, however, measure the
registration uncertainty, nor are they able to perform non-rigid registrations.
An extensive review of different ICP methods can be found in [26]. The CPD
method [23,22] is a probabilistic alternative to ICP. Yet, it does not provide an
uncertainty estimate for the registration result.

As it is common in non-rigid registration, we do not infer the rigid align-
ment. Fortunately, MH allows for easy integration of proposal distributions of
parameters other than the shape. The proposal distribution can therefore easily
be extended to include translation, rotation, scaling as shown in [21], or texture,
illumination, and camera position as in [30].

In this paper, we show how closest-point information can be incorporated into
the MH algorithm to take geometric information into account. We introduce a
novel closest-point-proposal (CP-proposal) to use within the MH algorithm. Our
proposal can make informed updates while maintaining the theoretical conver-
gence properties of the MH algorithm. To propose probabilistic surface defor-
mations, we make use of a Gaussian Process Morphable Model (GPMM) as our
prior model. In [8], GPMMs are applied to face surface registration. However, the
authors formulate the registration problem as a parametric registration problem,
which does not provide an uncertainty measure for the established correspon-
dence. Several alternatives already exist to the random-walk proposal, such as
MALA [9], Hamiltonian [24] or NUTS [11]. While the mentioned proposals work
well in lower-dimensional spaces and for smoother posteriors, we experienced
that they get computationally demanding in high dimensional spaces and have
problems when the posterior is far from smooth.

In our experiments, we register femur bones, where the biggest challenge is
establishing correspondence along the long smooth surface of the femur shaft. In
another experiment, we use our method to reconstruct missing data. To that end,
we compute the posterior distribution of registrations for faces where the nose
has been removed. Unlike ICP or CPD, we can give an uncertainty estimate
for each point in the surface reconstruction. Furthermore, we show how the
standard non-rigid ICP algorithm can end up in local optima, while our method
consistently provides good registrations and can also quantify the correspondence
uncertainty. The three main contributions of this paper are:

– We introduce a theoretically sound, informed closest-point-proposal for the
MH framework, with a well-defined transition ratio, section 3.2.

– We show the usefulness of the posterior distribution of registrations for com-
pleting partial shapes and for building better generalizing PDMs, section 4.2.



4 D. Madsen et al.

– We demonstrate that the MH algorithm with our proposal leads to better
and more robust registration results than the standard non-rigid ICP and
CPD algorithms, section 4.3.

2 Background

In this section, we formally introduce the GPMM as presented in [19], and we
show how the analytic posterior, which we use in our CP-proposal, is computed.

2.1 Gaussian Process Morphable Model (GPMM)

GPMMs are a generalization of the classical point distribution models (PDMs)
[19]. The idea is to model the deformations, which relate a given reference shape
to the other shapes within a given shape family, using a Gaussian process. More
formally, let ΓR ⊂ R3 be a reference surface. We obtain a probabilistic model of
possible target surfaces Γ by setting

Γ = {x+ u(x)|x ∈ ΓR} (1)

where the deformation field u is distributed according to a Gaussian process
u ∼ GP (µ, k) with mean function µ and covariance function k : ΓR×ΓR → R3×3.
Let Γ1, . . . ,Γn be a set of surfaces for which correspondence to the reference
surface ΓR is known. From this, it follows that we can express any surface Γi as:

Γi = {x+ ui(x)|x ∈ ΓR}. (2)

Classical PDMs define the mean and covariance function as:

µPDM(x) = 1
n

∑n
i=1 ui(x)

kPDM(x, x′) = 1
n−1

∑n
i=1(ui(x)− µPDM(x))(ui(x

′)− µPDM(x′))T .
(3)

However, GPMMs also allow us to define the mean and covariance function ana-
lytically. Different choices of covariance functions lead to different well-known de-
formation models, such as radial basis functions, b-splines, or thin-plate-splines.
To model smooth deformations, we choose a zero-mean Gaussian process with
the following covariance function:

k(x, x′) = g(x, x′) ∗ I3, (4)

g(x, x′) = s · exp(
−‖x− x′‖2

σ2
), (5)

where I3 is the identity matrix and g(x, x′) is a Gaussian kernel.
The model, as stated above, is a possibly infinite-dimensional non-parametric

model. In [19], they propose to use the truncated Karhunen-Loève expansion to
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obtain a low-rank approximation of the Gaussian process. In this representation,
the Gaussian process GP (µ, k) is approximated as:

u[α](x) = µ(x) +

r∑
i=1

αi
√
λiφi(x), αi ∼ N (0, 1) (6)

where r is the number of basis functions used in the approximation and λi, φi
are the i-th eigenvalue and eigenfunction of the covariance operator associated
with the covariance function k. Consequently, any deformation u is uniquely
determined by a coefficient vector α = (α1, . . . , αr). Hence, we can easily express
any surface Γ as:

Γ[α] = {x+ µ(x) +

r∑
i=1

αi
√
λiφi(x)|x ∈ ΓR} (7)

with associated probability

p(Γ[α]) = p(α) = (2π)
− r

2 exp(−‖α‖)2. (8)

2.2 Analytical Posterior Model

GPMMs make it simple and efficient to constrain a model to match known
correspondences, such as user annotations or the estimated correspondence from
taking the closest point. Indeed, the corresponding posterior model is again a
Gaussian process, whose parameters are known in closed form.

Let u ∼ GP (µ, k) be a GPMM and ε ∼ N (0,Σ), Σ = σnoiseI3 be the certainty
of each known landmark. Every landmark lR on the reference surface can then
be matched with its corresponding landmark lT on the target. The set L consists
of the n reference landmarks and its expected deformation to match the target

L = {(l1R, l1T − l1R), . . . , (lnR, l
n
T − lnR)} = {(l1R, û1), . . . , (lnR, û

n)}, (9)

with û being subject to Gaussian noise ε. Using Gaussian process regression,
we obtain the posterior model up ∼ GP (µp, kp), which models the possible
surface deformations that are consistent with the given landmarks. Its mean
and covariance function are given by:

µp(x) = µ(x) +KX(x)T (KXX + ε)−1Û

kp(x, x′) = k(x, x′) +KX(x)T (KXX + ε)−1KX(x′).
(10)

Here we defined KX(x) =
(
k(liR, x)

)
i=1,...,n

, a vector of the target deformation

as Û =
(
liT − liR

)
i=1,...,n

and the kernel matrix KXX =
(
k(liR, l

j
R)
)
i,j=1,...,n

.

3 Method

We formulate the registration problem as Bayesian inference, where we obtain
the posterior distribution of parameters α given the target surface as:

P (α|ΓT ) =
P (ΓT |α)P (α)∫
P (ΓT |α)P (α)dα

. (11)
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The prior probability, computed with eq. (8), pushes the solution towards a more
likely shape given the GPMM space, by penalizing unlikely shape deformations.
The likelihood term can easily be customized with different distance measures
and probability functions, depending on the application goal at hand. We are
usually interested in modeling the L2 distance between two surfaces (dl2), for
which we can use the independent point evaluator likelihood:

P (ΓT |α) =

n∏
i=1

N (dl2(ΓiT ,Γ[α]i); 0, σ2
l2), (12)

as also used in [21]. The L2 distance between the i-th point Γ[α]i ∈ R3 and its
closest point on the surface ΓT is rated using a zero-mean normal distribution
with the expected standard deviation for a good registration. The variance σ2

l2

is the observation noise of the points of our target surface. We can register for a
better Hausdorff distance [2] by changing the likelihood to:

P (ΓT |α) = Exp(dH(ΓT ,Γ[α]);λH) (13)

with dH being the Hausdorff distance between the two meshes and Exp being
the exponential distribution with pdf p(d) = λHe

−λHd.

3.1 Approximating the Posterior Distribution

The posterior distribution defined in eq. (11) can unfortunately not be obtained
analytically. Yet, we can compute the unnormalized density value for any shape
described by α. This allows us to use the Metropolis-Hastings algorithm [29] to
generate samples from the posterior distribution in the form of a Markov-chain.
The MH algorithm is summarized in algorithm 1. A general way to explore
the parameter space is to use a random-walk proposal, i.e. a Gaussian update
distribution in the parameter space

Q(α′|α) ∼ N (α, σl). (14)

We usually combine differently scaled distributions, each with a specified σl, to
allow for both local and global exploration of the posterior distribution. For each
proposal, one distribution is chosen at random.

Algorithm 1 Metropolis-Hastings sampling

1: α0 ← arbitrary initialization
2: for i = 0 to S do
3: α′ ← sample from Q(α′|αi)

4: t← q(αi|α′)p(ΓT |α′)p(α′)
q(α′|αi)p(ΓT |αi)p(αi)

. {acceptance threshold}

5: r ← sample from U(0, 1)
6: if t > r then
7: αi+1 ← α′

8: else
9: αi+1 ← αi
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Step 1,2,3 Step 4 Step 5,6

Fig. 1: Visualization of the CP-Proposal with the current instance (blue) from
the model, and the target surface (red). The grey ellipse in the centre window
shows the landmark noise for s2. The right window shows how an update for s2
is generated based on the posterior sample α0 and the step size d.

3.2 CP-proposal

A random-walk in the parameter space of the prior GPMM model M is time-
consuming as it usually is high-dimensional. Instead, we propose to accelerate
convergence by using an informed proposal. For the proposal to reach a unique
stationary distribution, we have to be able to compute the transition probabil-
ity, which requires the proposal to be stochastic. We propose the CP-proposal,
which takes the geometry of the model and the target into account to guide the
proposed change. Internally, we use a posterior model Mα based on estimated
correspondences to propose randomized informed samples. From a current state
α, we propose an update α′ by executing the following steps (visualized in fig. 1):

1. Sample m points {si} on the current model instance Γ[α].
2. For every point si, i ∈ [0 ... m] find the closest point ci on the target ΓT .
3. Construct the set of observations L based on corresponding landmark pairs

(si, ci) according to eq. (9) and define the noise εi ∼ N (0,Σsi) using eq. (16).
4. Compute the analytic posterior Mα (eq. (10)) with L and {Σsi}.
5. Get αo by first drawing a random shape3 from the posterior modelMα and

then projecting it into the prior model M.
6. We generate

α′ = α+ d(αo −α) (15)

with d ∈ [0.0 ... 1.0] being a step-length.

The noise ε in step 3 is modeled with low variance along the normal direction
and high variance along the surface. The variance at each point si in Γ[α] is
computed by:

Σsi = [n,v1,v2]

σ2
n 0 0
0 σ2

v 0
0 0 σ2

v

 [n,v1,v2]T , (16)

3 Sampling all αi independently from N (0, 1) and constructing the shape with eq. (7).
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where n is the surface normal at the position si in the mesh and v1 and v2 are
perpendicular vectors to the normal. The variances along the vectors are set to
σ2
n = 3.0 mm2 and σ2

v = 100.0 mm2. This noise term ensures that the posterior
model from step 4 takes the uncertain correspondence along the surface into
account, which is not well defined in flat regions.

If a small step-length is chosen in step 6, the current proposal is only adjusted
slightly in the direction of the target surface, resulting in a locally restricted step.
With a step size of 1.0, the proposed sample is an independent sample from the
posterior in eq. (10).

In practice, closest-point based updates often find wrong correspondences
if the sizes of Γ and ΓT greatly differ. This is especially problematic in the
case of elongated thin structures. It is, therefore, useful also to establish the
correspondence from ΓT to Γ from time to time.

Computing the Transition Probability For each new proposal α′ from the
CP-proposal distribution, we need to compute the transition probability as part
of the acceptance threshold (see algorithm 1 step 4). The transition probability
q(α′|α) is equal to the probability of sampling the shape corresponding to αo
from the posterior model Mα, computed in step 4 of the CP-proposal. For
q(α|α′), the transition probability is computed in the same way. We solve eq. (15)
for α′o after swapping α and α′ and evaluate the corresponding shape likelihood
under the posterior distribution Mα′ .

4 Experiments

In the following, we perform registration experiments on surfaces of femur bones
as well as a reconstruction experiment of missing data on face scans. For the face
experiment, the face template and the face GPMM from [8] are used together
with 10 available face scans. For the femur experiments, we use 50 healthy femur
meshes extracted from computed tomography (CT) images4. Each surface is
complete, i.e. no holes or artifacts. This setting is optimal for the standard ICP
algorithm and therefore serves as a fair comparison to the CPD algorithm and
our probabilistic implementation. The CPD experiments are performed with the
MATLAB code from [22] and all other experiments with the Scalismo5 library.

4.1 Convergence Comparison

We compare the convergence properties of our CP-proposal and random-walk.
The CP-proposal configuration is mentioned together with its definition in sec-
tion 3.2. For the random-walk, we use a mixture of the proposals defined in
eq. (14), with σl being set to six different levels, from 1.0 mm to 0.01 µm, and all
six proposal distributions equally likely to be sampled from. In fig. 2, the con-

4 Available via the SICAS Medical Image Repository [15].
5 https://scalismo.org

https://scalismo.org
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Fig. 2: Convergence plots for the femur GPMM registrations with 50 components.
Our CP-proposal is shown to the left and the random-walk (including a zoomed
out plot) to the right. The CP-proposal needs 300 iterations, while the random-
walk needs more than 200k samples for the burn-in phase without reaching the
same registration quality even after 1M iterations. Run-time in seconds is shown
on the lower x-axis and number of MH iterations on the upper.

vergence time of the standard random-walk and the CP-proposal is shown. The
experiment is performed with a GPMM with a low-rank approximation of 50
components, see section 2.1. We randomly initialize the model parameters and
start 5 registrations in parallel. As expected, our proposal leads to much faster
convergence. In fig. 3 we see a posterior plot comparison of the two proposals.
Notice how less likely samples are often accepted, which makes it different from
deterministic methods such as ICP and CPD.

4.2 Posterior Estimation of Missing Data

We use a face GPMM to estimate the posterior distribution of noses from partial
face data, where the nose has been removed. In fig. 4, we see that there is
no perfect overlap between the face model and the scan. Therefore, we need
to change our likelihood function to adjust for a possible changing number of
correspondence points during the registration. To obtain a close fit on average,
while also penalizing far away points, we use the collective average likelihood
introduced in [30] and extend it with the Hausdorff likelihood,

(17)P (ΓT |α) ∝ N (dCL(ΓT ,Γ[α]); 0, σ2
CL) · Exp(dH(ΓT ,Γ[α]);λH),

where

dCL =
1

N

N∑
i=1

‖ΓiR − ΓiT ‖2. (18)

Here the closest point of ΓiR on the target is ΓiT andN is the number of landmarks
in the reference mesh ΓR.

On a technical note, using ICP to predict correspondence in a missing data
scenario maps all points from the reference, which are not observed in the tar-
get to the closest border. To counter this effect, we filtered away all predicted
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Fig. 3: Posterior plot comparison of the CP-proposal and random-walk. Even
with a very small update step for the random-walk, it has difficulties to explore
the posterior in the high-dimensional setting. The CP-proposal, on the other
hand, can more efficiently explore the high-dimensional space.

correspondences, where the predicted target point is part of the target surface’s
boundary. This is also done in e.g. [1].

In fig. 4, we show the correspondence uncertainty from the posterior registra-
tion distribution. Our method infers a larger correspondence uncertainty in the
outer region. However, as the surface is observed, the uncertainty is low in the
direction of the face surface normals but high within the surface. This is because
there is no anatomical distinctive feature to predict the correspondence more
precisely. High uncertainty is also inferred on the nose, where data is missing.
In contrast to the outer region, the uncertainty in the direction of the normal of
the reconstructed nose surface is large. This shows that uncertainty visualization
can be used to detect missing areas or to build better PDMs by incorporating
the uncertainty of the registration process as demonstrated next.
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0.2

0.4
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Fig. 4: Nose reconstruction with the face GPMM. No uncertainty in the outer
region of the face along the normal indicates that only the correspondence is
uncertain compared to the nose.
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Fig. 5: (a) shows the better generalization of a PDM using 100 random samples
from the posterior distributions of each of the 10 targets, compared to only using
the most likely samples. The blue line flattens out as no more than 9 principal
components are computed with 10 meshes. (b) 2D slice view of posterior face
samples. The MAP solution does not explain the ground-truth shape, whereas
the random samples cover the ground-truth shape.

PDMs from Posterior Distributions In this experiment, we show how to
benefit from probabilistic registration when building new PDMs from a small
dataset with partially missing data, which is common in medical imaging. If
much more data is available, the influence of using the posterior is reduced as the
variability gained from the probabilistic framework can be gained by including
a lot more data. In section 4.2, we registered the 10 available face scans by
computing the posterior distribution of reconstructions for each target. In fig. 5b
we show samples from the posterior distribution of nose reconstructions.

In fig. 5a, we compare two different PDMs’ generalization abilities, i.e. the
capability to represent unseen data [31]. One PDM is built following the classical
approach of only using the most likely registrations. The other PDM is built from
100 random samples from each of the 10 posterior distributions. We compute
the average generalization of all 10 PDMs built using a leave-one-out scheme.
The plot shows that the PDM built from the posteriors generalizes better.

4.3 Registration Accuracy - ICP vs CPD vs CP-proposal

In this experiment, we compare the best sample, also known as Maximum a pos-
teriori (MAP) from our probabilistic method, with the ICP and CPD methods.
We use a femur GPMM approximated with 200 basis functions. From the model,
we sample 100 random meshes as starting points for the registration. We, there-
fore, end up with 100 registrations for each target. In fig. 7 we show the summary
of all 5000 registrations (All) and some individual representative target meshes.
The naming scheme combines the registration method (ICP, CPD, or MH with
CP) with the likelihood function which was used (L2). The box plot shows the
variation of the average L2 surface distances from all 100 registrations of each
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Fig. 6: Femur registration with uncertainty. The registration uncertainty is visu-
alized with the point-wise sum of variances. As expected, the higher uncertainty
of the established correspondence coincides with the shaft region with the least
characteristic shape. No variance is observed along the normals, so the uncer-
tainty is only in the correspondence along the surface.

target. As the ICP and CPD methods converge at maximum 100 iterations, we
also restrict our sampling method to 100 samples. The chain usually converges
within 100-300 samples as shown in fig. 2.

The CP-proposal is consistently better than the ICP and CPD registrations,
and at the same time provides much less fluctuation in the quality. The few
outliers for our method are cases where the chain has not converged. In fig. 6,
we show the uncertainty of the established correspondence of a registration from
1000 samples (300 samples for the burn-in phase). Depicted is the uncertainty of
individual points from the posterior distribution from a single registration. Note
the high uncertainty values along the shaft, which indicate that the established
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Fig. 7: Distances between the final registrations and their target meshes. For
each target mesh, we randomly initialize 100 registrations. The MAP sample
from our CP-proposal is superior to ICP and CPD. The femur target id (0 to
49) is shown on top of each plot.
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Fig. 8: Registration result comparison using either the Hausdorff or the Euclidean
distance likelihood. (a) Euclidean distance and (b) Hausdorff distance between
the MAP samples and the target meshes. The plots show that the average L2
surface distance is only slightly worse when the Hausdorff (H) likelihood is used.

correspondence is less reliable in that region. No variance along the normals
indicates that the uncertainty is purely correspondence shift within the surface.

Alternative Hausdorff Distance Likelihood In fig. 8a, we compare the reg-
istration results based on their Hausdorff distance, and we compare results from
sampling using the L2 likelihood, eq. (12), and the Hausdorff likelihood, eq. (13).
As expected, we can focus the registration to avoid large Hausdorff distances.
The equivalent L2 likelihood experiment is shown in fig. 8b and shows that while
optimizing for the Hausdorff distance, the average L2 surface distance is increas-
ing only slightly. This demonstrates the capability to change the likelihood in
our framework based on the application’s needs.

Drawbacks of Deterministic Methods The main problem with ICP and
CPD is that they cannot recover from local optima. If the algorithm finds the
closest point on the wrong part of the target, we end up with a bad registration.
In fig. 9, we show a registration result of the 3 registration methods. The ICP
method can get the overall length of the bone correct but ends up with a regis-
tration, where the structure is folding around itself. The CPD approach is more
robust than ICP as it preserves the topological structure of the point sets. Our
method additionally provides an uncertainty map.

Run-time Comparison The number of components in the low-rank approx-
imation can be seen as regularization of the deformations. More complex local
deformations can be obtained using more components. The algorithm run-time
scales linearly in the number of components, with the run-time being 2.5 times
slower for each time the model rank doubles. For models with rank 50, 100 and
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ICP L2: 0.97
H: 5.6 CPD L2: 0.65

H: 4.4 OUR L2: 0.42
H: 3.2

0.3

0.0

0.15

Fig. 9: The 3 registration methods (ICP, CPD, OURS) are shown in separate
windows. The registration accuracy for the same target is noted in the form of
Euclidean- (L2) and Hausdorff- (H) distances (mm). The orange ellipses highlight
problematic areas of the registration for each method. For each method, we show
the target with the registration overlaid, the 3D-registration, and a 2D slice of
the registration (colored) and the target (black). Notice how our method (in
comparison to ICP and CPD) shows the correspondence uncertainty (summed
point variances (mm2) for each landmark).

200, the CP-proposal takes: 46 s, 110 s and 275 s. In comparison, the ICP imple-
mentation takes 30 s, 69 s and 155 s. The CPD implementation does not make
use of the GPMM model and takes 75 s for 100 samples with our setup. While
our method is slower than the two others, we still get reasonable run-times while
inferring more accurate results and estimate the full posterior instead of a single
estimate.

5 Conclusion

In this paper, we presented a probabilistic registration framework. Our main con-
tribution is the informed proposal for the MH algorithm, which makes it possible
to work in a high-dimensional model space that would be difficult to explore with
pure random-walk. Our informed proposal integrates geometry awareness in the
update step, which results in faster convergence. In the case of missing data,
our method provides an estimate of the posterior over possible reconstructions.
Thus our framework can provide uncertainty measures for critical tasks such as
surface reconstruction in the medical domain, as required for surgical decision
making. Using our framework, different likelihood terms can be combined and
used, while the choice is restricted to the L2 norm in standard ICP and CPD.
Finally, we showed how to build PDMs that generalize better using the posterior
distribution of registrations.
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30. Schönborn, S., Egger, B., Morel-Forster, A., Vetter, T.: Markov chain monte carlo
for automated face image analysis. International Journal of Computer Vision
123(2), 160–183 (2017)

31. Styner, M.A., Rajamani, K.T., Nolte, L.P., Zsemlye, G., Székely, G., Taylor, C.J.,
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