
Journal of Mathematical Imaging and Vision (2019) 61:443–457
https://doi.org/10.1007/s10851-018-0854-5

Error-Controlled Model Approximation for Gaussian Process
Morphable Models

Jürgen Dölz1 · Thomas Gerig1 ·Marcel Lüthi1 · Helmut Harbrecht1 · Thomas Vetter1

Received: 12 March 2018 / Accepted: 9 October 2018 / Published online: 24 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid deformation models for surface and image
registration. Deformation models, such as B-splines, radial basis functions, and PCA models are defined as a probability
distribution using a Gaussian process. The method depends heavily on the low-rank approximation of the Gaussian process,
which is mandatory to obtain a parametric representation of the model. In this article, we propose the use of the pivoted
Cholesky decomposition for this task, which has the following advantages: (1) Compared to the current state of the art used
in GPMMs, it provides a fully controllable approximation error. The algorithm greedily computes new basis functions until
the user-defined approximation accuracy is reached. (2) Unlike the currently used approach, this method can be used in a
black-box-like scenario, whereas the method automatically chooses the amount of basis functions for a given model and
accuracy. (3) We propose the Newton basis as an alternative basis for GPMMs. The proposed basis does not need an SVD
computation and can be iteratively refined. We show that the proposed basis functions achieve competitive registration results
while providing the mentioned advantages for its computation.

Keywords Non-rigid registration · Gaussian process · Image registration · Shape registration · Pivoted Cholesky · Gaussian
Process Morphable Models · GPMM · Statistical shape modeling

1 Introduction

Acommonapproach inmedical image analysis and computer
vision is analysis by synthesis: An image is analyzed by syn-
thesizing it using a generative model [13,36]. The resulting
model-parameters are then used to understand the content of
the target image. Popular examples of analysis by synthesis
in medical image analysis are atlas (or template) match-
ing approaches [8,20,33], or statistical shape and appearance
models [6,7,19]. The main idea behind all these methods is
that any object ΓT ⊂ R

d to be analyzed can be written with
respect to a reference object ΓR ⊂ R

d which is deformed
by suitable deformation u� : ΓR → R

d . For better readabil-
ity, we denote vector-valued quantities by bold-faced lower
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case letter, whereas we denote matrix-valued quantities by
bold-faced capital letters.

For given image or surface representations ΓR and ΓT ,
we are interested in finding the corresponding deforma-
tion field u� that deforms ΓR such that it matches ΓT , i.e.,
it holds

ΓT = {x + u�(x) : x ∈ ΓR}.

Aiming atmodelingnon-rigid deformations, the crucial ques-
tion for practical applications is how to model a family of
possible deformations u, which contains (a good approxima-
tion to) u�.

Recently, Lüthi et al. proposed Gaussian Process Mor-
phable Models (GPMM), which model the deformations as
a Gaussian process GP(μ,K) with mean function μ : Ω →
R
d and covariance (or kernel) functionK : Ω ×Ω → R

d×d

[11,26,27], see Fig. 1 for a visual overview. In this view, all
the above-mentioned models correspond to special choices
of the covariance function and it becomes easy to combine
characteristics of the individual models or to incorporate
additional prior knowledge by, for example, enforcing mir-
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Fig. 1 In this figure, an overview about how the Gaussian ProcessMor-
phable Models are used on different domains. Bottom left A reference
2D mesh (colored in red) is deformed using a deformation field that is
defined on the mesh itself. Bottom middle The GPMM deformation
model is defined on the whole 2D image domain. Bottom right A ran-
dom sample of a GPMM defined on a 3D mesh with a spherical shape
(Color figure online)

ror symmetries [25], landmark constraints [24], or bymaking
models spatially varying [11]. The key aspect of the method
in [26] is that it allows modeling the expected deformations
for individual registration tasks, which makes it easy to tailor
the problem to a specific data set. This is generally done in
three steps:

1. Prior Model Building Define a family of deformations
u using a Gaussian process GP(μ,K) with a kernel
functionK. Themodel can be customized by combining
kernel building blockswith different properties tomatch
the expected family of deformation functions for a given
registration task.

2. Model Approximation The family of deformations u
generated by a Gaussian process GP(μ,K) can often be
well approximated using a truncated Karhunen–Loève-
expansion [5], i.e., the family of deformations u can
approximatively be described as

u ≈ uM := μ +
M∑

i=1

αi
√

λiφi , αi ∼ N (0, 1).

The corresponding pairs (λi ,φi ) are given as eigenpairs
corresponding to the M largest eigenvalues of an inte-
gral operator associated to the covariance function K.
Using this representation, any deformation uM is given
as a linear combination of the eigenfunctions and
parametrized by finitelymany parametersα = [

α1, . . . ,

αM
]
:

uM (α, ·) = μ(·) +
M∑

i=1

αi
√

λiφi (·).

3. Model Fitting/Registration The parameterized model
uM (α, ·) is used to find the parameters α to match the
deformed reference ΓR to a given target ΓT .

For the most optimal use of the prior knowledge incor-
porated in K, the family of possible deformations u must be
approximated aswell as possible by the truncatedKarhunen–
Loève expansion uM . However, the approximation method
proposed in [26] has three major disadvantages: (1) The
Nyström method lacks a rigorous control of the approxima-
tion accuracy. (2) The method relies on parameters, such as
the sampling of points on the reference. These parameters
depend on the model to be approximated and need an expe-
rienced user to be chosen. (3) A refinement of the model
(adding more basis functions) requires a re-computation of
the whole model. The mentioned issues have a big impact on
the practical usability of the registration framework, where a
feedback about the approximation accuracy of the modeled
prior is important to choose the model. Our contribution in
this work is to introduce the use of the pivoted Cholesky
decomposition for this task, see [9,18], which allows the
computation of a Karhunen–Loève-expansion up to a pre-
scribed accuracy with a rigorous error control and to show its
properties and advantages compared to the Nyströmmethod,
which was originally proposed for this purpose by Lüthi et
al. [26]:

1. We enable the Gaussian process registration frame-
work to approximate models with a rigorous black-box
error control. In particular, the parameter M is chosen
adaptively for a user-defined tolerance. This is a major
advantage over the Nyström method, which lacks feed-
back about the actual approximation accuracy and has
several parameters to guess heuristically.

2. The pivoted Cholesky decomposition follows a greedy-
type strategy, where the corresponding basis functions
generate a subspace which is equal to the subspace
spanned by the truncated Karhunen–Loève-expansion.
We propose therefore to use the greedy-type basis
from the pivoted Cholesky decomposition instead of
the eigenfunctions for the representation of uM . Thanks
to the greedy-type strategy, the subspace can easily
be enlarged by adding additional basis functions, if
required. We show that the proposed basis functions
lead to competitive results. However, in contrast to the
Nyström method, the basis is refinable and is computa-
tionally less intensive.

The paper is structured as follows: In Sect. 3, we reca-
pitulate the fundamentals of Gaussian Process Morphable
Models and the Nyström method which is currently used for
its discretization. We particularly discuss the drawbacks of
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the Nyströmmethod and how this affects registration results.
In Sect. 4, we introduce the pivoted Cholesky decomposi-
tion for the low-rank factorization of covariance matrices
and discuss how it can be used to compute Karhunen–
Loève expansions for GPMMs. Section 5 introduces the
new greedy-type basis and contains also a discussion why
the registration results with this basis should behave simi-
lar to the registration results with the eigenbasis from the
Karhunen–Loève expansions. The numerical experiments in
Sect. 6 are concerned with the approximation quality of the
introduced method, whereas the numerical experiments in
Sect. 7 demonstrate that the introduced greedy-type basis for
GPMM is competitive to state-of-the-art registration meth-
ods. Finally, in Sect. 8, we draw our conclusions.

The core algorithms of the method proposed are imple-
mented in the open-source project Scalismo [35].

2 RelatedWork

The Gaussian Process Morphable Model (GPMM) frame-
work [26], on which our work is based on, can be seen as the
unification of different concepts. On the one hand, statistical
shapemodels (SSM) can be extendedwith additional flexibil-
ity using kernel functions. On the other hand, the models are
used as statistical priors for surface and image registration.
The work by Grenander et al. [13] contains similarities to
the GPMM approach, as they propose to use a basis func-
tion representation to span the model space. However, in
all these works, the basis functions have to be known ana-
lytically [3], or the initial model needs to be of finite rank
[21]. In [22] and also in [28], the covariance function is not
approximated, which is only feasible for compact kernels
with small correlation lengths. In the context of Gaussian
processes and the computation of low-rank approximations
to covariance matrices, the pivoted Cholesky decomposition
is an established algorithm, cf., e.g., [4,9,18,31]. Having the
low-rank approximation at hand, it has been shown in [18]
that the eigenpairs of the covariance matrix can be obtained
approximately by solving an eigenvalue problem which has
the dimension of the rank of the low-rank approximation.
Whereas these works are restricted to the low-rank approx-
imation of matrices, is has been analyzed in [17] how the
continuous eigenvalue problem can be efficiently discretized
and solved by the pivoted Cholesky decomposition by the
use of finite elements. In [30] the authors employ the pivoted
Cholesky decomposition to compute a low-rank factorization
of kernel functions in terms of function skeletons. Since one
can add another basis function to the low-rank factorization
without recomputing the others, they call the obtained basis
the “Newton” basis, in analogy to Newton interpolation. This
kernel-based approach has been extended in [34] to compute
a Karhunen–Loève expansion if radial basis functions are
used for the spatial discretization.

3 Fundamentals of Gaussian Process
Morphable Models

3.1 Modeling Deformation Priors

Gaussian Process Morphable Models (GPMM), which have
been introduced in Lüthi et al. [26] allow to define prior
models for registration analytically in advance using a
matrix-valued Gaussian process. The vector fields, which are
defined continuously on a domain Ω ⊂ R

d , act as the non-
rigid transformation of the reference object ΓR ⊂ Ω , which
could be any geometric object or grid defined in Ω . The
GPMM are used on different domains, such as two- or three-
dimensional surfaces and grid-like structures, which is also
visualized in Fig. 1.

AGaussian processGP(μ,K) is defined by itsmean func-
tion μ : Ω → R

d and its covariance functionK : Ω ×Ω →
R
d×d , see [31]. Then, any deformation u sampled from

GP(μ,K), gives rise to a new surface Γ by warping the
reference surface ΓR :

Γ = {x + u(x) : x ∈ ΓR}.

Similar to the PCA representation of a statistical shape
model, a Gaussian process GP(μ,K) can be represented in
terms of an orthonormal set of basis functions {φi }∞i=1

u(x,α) ∼ μ(x) +
∞∑

i=1

αi
√

λiφi (x), αi ∈ N (0, 1), (1)

where (λi ,φi ) are the eigenpairs of the integral
operator

TKf(·) :=
∫

Ω

K(·, x)f(x) dρ(x) (2)

with ρ(x) denoting a measure. The representation (1) is
known as the Karhunen–Loève expansion of the Gaussian
process [5].

Since the random coefficients, αi are uncorrelated, the
variance of u is given by the sum of the variances of the
individual components. Consequently, the eigenvalue λi cor-
responds to the variance explained by the i-th component.
This suggests that, if the λi decay sufficiently quickly, we
can, instead of (1), use the low-rank approximation

uM (x,α) ∼ μ(x) +
M∑

i=1

αi
√

λiφi (x). (3)
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The resulting model is a finite dimensional, parametric
model with M components, similar to a standard statistical
model. The expected error of this approximation is given by
the tail sum

∞∑

i=M+1

λi . (4)

Estimates for the decay of the λi show that the tail sum is
reasonably small even for small M , provided that the covari-
ance functionK is sufficiently smooth, cf. [14]. In particular,
any valid positive semi-definite covariance function can be
used.

3.2 NyströmMethod

To compute the truncated Karhunen–Loève-expansion (3)
for an approximate GPMMmodel, the eigenpairs of the inte-
gral operator (2) have to be computed, i.e., the continuous
eigenvalue problem

(
TKφm

)
(x) = λmφm(x) (5)

has to be solved, where TK is the integral operator (2) given
by the covariance function. In order to solve the eigenvalue
problem numerically, it has to be discretized, i.e., it has to be
transformed into a finite dimensional problem

Cφm,N = λm,Nφm,N (6)

with φm,N ∈ R
N and C ∈ R

N×N .
The current state of the art proposed in [26] is to use

the Nyström method, which performs the discretization by
a sampling approach. Therefore, for some random samples
x1, . . . , xN drawn according to ρ, one approximates

∫

Ω

K(·, x)f(x) dρ(x) ≈ 1

N

N∑

i=1

K(·, xi )f(xi ), (7)

cf. [31] and the references therein. Although the estimator
can be inaccurate, it comes with minimal assumptions on
the measure ρ, which makes it highly attractive for problems
with little information. If the reference domain is for example
given by a set of vertices, appropriate samples can be drawn
from this set.

Evaluating (7) at the sample points and multiplying with
N yields, similar to (6), the finite dimensional eigenvalue
problem

CNystrφm,N = Nλmφm,N (8)

with the matrix

CNystr = [
K(xi , x j )

]N
i, j=1

and the point values

(
φm,N

)
i ≈ φm(xi ), i = 1, . . . , N .

Combining (2), (5) and (7), the eigenfunctions can then be
evaluated at any given point by

φm(x) ≈ λ−1
m,N

N∑

i=1

K(x, xi )
(
φm,N

)
i . (9)

Probabilistic error bounds for the eigenpairs exist and show
that the accuracy increases with the number of sample points,
cf. [32].

3.3 Accuracy of the NyströmMethod

The Nyström method has two major drawbacks which cause
difficulties in building accurate GPMM approximations.

1. The number of required eigenfunctions is unknown:
Even if it is known that the GPMM has a good low-rank
approximation, the required number of eigenfunctions,
i.e., the value of M , cannot be determined in advance or
by the algorithm, but has to be chosen by the user.

2. Dependence on random samples: The common problem
of randomized algorithms that there are no deterministic
error bounds applies also for GPMM. In particular for
GPMM, the samplingbased approachmightmiss impor-
tant features of the covariance function on small scales,
which might be crucial for building accurate approxi-
mations.

These two points make it difficult to judge whether an insuf-
ficient registration result is caused by an inaccurate prior
model. For a user, it is difficult to guess the right amount of
basis functions and the right density of random sampling to
make sure that the prior model accuracy is not the issue.

To overcome this problem, one may argue that a suffi-
ciently large number of samples N and a sufficiently large
number of eigenfunctions M will lead to a good approxima-
tion. However, whereas a large value of M may cause trouble
in the optimization algorithm, the choice of N 	 1 leads to a
N×N dense eigenvalue problem, whose solution with deter-
ministic algorithms has a complexity ofO(N 3). In addition,
for large N , the evaluation of the eigenfunctions (9) becomes
computationally intensive for a large number of evaluation
points. Using a randomized SVD, cf., e.g., [16] and the refer-
ences therein, the complexity of the solution of the eigenvalue
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problem can be lowered to O(MN 2). While this reduces
the complexity of the solution of the eigenvalue problem, it
introduces an additional probabilistic component to the algo-
rithm and still requires assembling the full covariancematrix,
which has a complexity in memory and computation time of
O(N 2).

We thus require an algorithm satisfying the following
requirements:

1. The algorithm should be completely deterministic, i.e.,
it should avoid random sampling and any other random
input data.

2. Given a user-defined tolerance, the algorithm should
automatically detect the number of required eigenfunc-
tions, i.e., the value of M , such that the error is below
that tolerance.

3. While the previous two requirements address the issues
discussed at the beginning of this section, we require
the algorithm to be computationally efficient without
sacrificing accuracy.

While the first requirement can in principle be addressed by
more advanced Nyström methods based on quadrature rules
for the approximation of the integral in (7), see [15], these
quadrature rules are either difficult to construct or lead to
large system matrices, i.e., N 	 1. Therefore, the following
chapter shall discuss an algorithm fulfilling these require-
ments based on the pivoted Cholesky decomposition.

4 Pivoted Cholesky for GPMM
Approximation

4.1 Low-Rank Approximation with the Pivoted
Cholesky Decomposition

Although the systemmatrices of the discrete eigenvalue prob-
lems (6) and (8) are dense, they still have a low dimensional
structure in the sense of low-rank approximations. In fact,
the decay of the eigenvalues of the integral operator (2) has
been well investigated in [14], where it has been proven that
the eigenvalues satisfy the decay estimate

λm ≤ Cm−2p/d .

Here, p is some parameter which increases with the smooth-
ness of the kernel. It is therefore evident that there exists a
reasonably sized M such that the tail sum (4) is sufficiently
small. Thus, assuming that the prescribed GPMMcan be rea-
sonably well approximated by a truncated Karhunen–Loève
expansion implies that its correlation matrices can be well
approximated by a truncated singular value decomposition

and the matrices of the dense eigenvalue problems (6) and
(8) have a low-rank structure.

A suitable tool to reveal the low-rank structure of a covari-
ance matrix is the pivoted Cholesky decomposition. It only
relies on the a priori knowledge that covariance matrices
are positive semi-definite matrices, and does not require
the precomputation of the matrix. Non-stationary covariance
kernels are naturally included, since they yield positive semi-
definite matrices.

Given some user-defined tolerance, the algorithm finds a
low-rank factorization such that the approximation error is
below that tolerance, measured in the trace-norm for pos-
itive semi-definite matrices. In particular, it automatically
detects a rank M which is required to fulfill that tolerance.
The pivoted Cholesky decomposition, cf. [9,18], is given in
Algorithm 1.

Algorithm 1 The pivoted Cholesky decomposition
Input:

– Function C(i, j) computing entry (i, j) of matrix C.
– Relative error tolerance ε > 0

Output:

– Required rank M for low-rank approximation
– Low-rank approximation CM = ∑M

i=1 �i�
ᵀ
i

– Approximation error trace(C − CM ) ≤ ε · trace(C)

Set M = 1
Set d = [

C(i, i)
]N
i=1

Set error = ‖d‖	1

Set ε = ε · error
Set π = [1, 2, . . . , N ]
while error > ε do

Set i = argmax{dπ j : j = M, M + 1, . . . , N }
Swap πM and πi
Set 	M,πM = √

dπM

for M + 1 ≤ i ≤ N do
Compute

	M,πi =
(
C(πM , πi ) − ∑M−1

j=1 	 j,πM 	 j,πi

)
/	M,πM

Update dπi = dπi − 	M,πM 	M,πM

end for
Compute error = ∑N

i=1 dπi

Set M = M + 1
end while

As can be seen from the algorithm, it requires a func-
tion computing the covariance matrix entries as input, rather
than the covariance matrix itself. The computation of the full
covariance matrix can thus be avoided since the algorithm
determines automatically which entries of the matrix need to
be computed, which are at mostO(NM), rather thanO(N 2).
The complexity of the algorithm itself is O(NM2).

The only input parameter the user has to control is the
approximation accuracy. The error of the output low-rank
approximation is guaranteed to be below that threshold. This
gives the user a rigorous control over the approximation accu-
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Fig. 2 Samples from aGPMMdeforming a sphere referencemeshwith
a radius of 100 mm. The kernel has been chosen to be as a Gaussian
kernel with a large length-scale, combinedwith a small local one (Gaus-
sian kernel with σ = 60 and scale = 30 and a Gaussian kernel with
σ = 15 and scale = 10). There is a visible increase in flexibility of the
modeled deformations when increasing the approximation accuracy of
the GPMM

racy of the GPMM as illustrated in Fig. 2. There, different
random samples are shown from a GPMM approximated
with iteratively refined accuracy.

Another interesting variant of the algorithm evolves when
an upper limit to the rankM of the low-rank approximation is
fixed. Since the output of the algorithm includes the error of
the low-rank approximation, one can directly check whether
the quality of the low-rank approximation is sufficient.

Having discussed a deterministic and efficient algorithm
for the low-rank approximation of covariance matrices, we
discuss next how this can be used for the computation of
Karhunen–Loève expansions. Note, that this is relevant only
for applications where the computation of the Karhunen–
Loève expansion itself is an absolute necessity for further
algorithms. We will show in Sect. 5 that for many registra-
tion algorithms a full KL-expansion is not necessary and the
low-rank approximation from the pivoted Cholesky decom-
position is sufficient. In this case, the post-processing step
described in the remainder of this section can be omitted.

4.2 Computing Karhunen–Loève Expansions Using
Low-Rank Approximations

Having a suitable algorithm for the computation of low-
rank approximations at hand, onemay replace the covariance
matrices of the eigenvalue problems (6) and (8) by its low-
rank factorizations C ≈ LMLᵀ

M . This yields an eigenvalue
problem

LMLᵀ
Mvm,N = λm,Nvm,N .

Exploiting the fact that LMLᵀ
M has the same eigenvalues as

Lᵀ
MLM , we obtain an equivalent eigenvalue problem

Lᵀ
MLM v̌m,N = λm,N v̌m,N , (10)

which has the reduced dimension M � N and can
thus be solved by standard eigensolvers for dense matri-
ces. Approximations to the eigenvectors φm,N are then
given by

φm,N ≈ vm,N = LM v̌m,N . (11)

Thus, given a low-rank approximation C ≈ LMLᵀ
M , the

solution of the dense small eigenvalue problem (10) and the
computation of the eigenvectors by (11) can be accomplished
in complexity O(M3) and in O(NM2), respectively. Since
the computation of the small eigenvalue problem and the
complexity of the pivoted Cholesky decomposition are both
O(NM2), the overall complexity for the computation of the
Karhunen–Loève expansion is also O(NM2).

Assuming that the GPMMcan be reasonably well approx-
imated by a truncated Karhunen–Loève expansion, M is
reasonably small, and, thus,we can choose N 	 1, for exam-
ple in the range of millions. This allows for highly accurate
spatial approximations. In the following, we discuss two suit-
able discretizations for surface and image registration. The
discretizations are chosen illustratively and could be replaced
by more advanced discretization schemes as discussed in the
appendix.

4.2.1 Spatial Discretization for Surfaces

Because of its minimal assumptions, the Nyström approach
is very popular in the machine learning community. It is also
well suitable for surface to surface registration, where the
shape is represented as a set of vertices and there is almost
no structure available.

Thanks to using the pivoted Cholesky decomposition, we
are no longer restricted by the size of the eigenvalue problem,
and that the number of sampled points can be several million.
Thus, we may choose to deterministically sample every ver-
tex of the surface and can even include additional evaluation
points in the deterministic sampling, such that the expen-
sive interpolation (9) can be omitted. We can thus compute
the eigenfunctions directly on all mesh and evaluation points
and can thus completely avoid any random sampling on the
surface and its corresponding uncertain error. Consequently,
when using the pivoted Cholesky decomposition, we obtain a
completely deterministic solution within the user-controlled
error tolerance.

Instead of the quadrature formula (7) where each quadra-
ture point has the same weight, one may also choose more
sophisticated quadrature points, see, e.g., [15]. The pivoted
Cholesky can also be employed in this case, as is discussed
in Appendix “Advanced Nyström Schemes”.
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4.2.2 Spatial Discretization for Grid Approximations

Instead of the Nyström approach for the discretization of the
eigenfunctions, one may also choose finite element schemes.
Finite element schemes rely on finite dimensional function
spaceswhich are definedon (possibly non-regular) grid struc-
tures. Thus, they are interesting for image registration, where
the computational domain naturally provides such a struc-
ture.

A throughout analysis of a wide range of finite element
schemes for the computation ofKarhunen–Loève expansions
using the pivoted Cholesky decomposition was given in [17].
For simplicity, we restrict the presentation in this section to
piecewise trilinear finite elements, see Appendix “Finite Ele-
ment Scheme on aRectangularGrid”, on a three-dimensional
rectangular grid. The grid is assumed to consist of cells of
size h1 × h2 × h3, and we restrict ourselves to the case
ρ(x) = 1 and employ a well-known mass lumping scheme.
This results in a function space spanned by N vector-valued
basis functions ϕi , i = 1, . . . , N , in which the approximate
eigenfunctions shall be represented.

Under these assumptions, the eigenvalue problem (5) dis-
cretized with said finite elements becomes

CFEMφm,N = h2λm,Nφm,N . (12)

Here, h =
√
h21 + h22 + h23, with the system matrix

CFEM = [
K(xi , x j )

]N
i, j=1

and the approximate eigenfunctions

φm(x) ≈ φm,N (x) =
N∑

i=1

(
φm,N

)
iϕi (x).

Obviously, given the similarity of the eigenvalue problem
(12) to the eigenvalue problems (6) and (8), the pivoted
Cholesky decomposition can also be employed in the case
of this finite element scheme to compute the Karhunen–
Loève expansion. However, for more general finite element
schemes, the structure of the eigenvalue problem (12)
becomesmore involved andwe refer toAppendix “Advanced
Finite Element Schemes” and [17] for more details.

A particular advantage of finite element schemes is that
precise error estimates exist on how to choose the threshold
of the pivoted Cholesky decomposition in dependence of the
grid size h, see [17]. In the described case of piecewise tri-
linear finite elements, when the covariance function fulfills
mild smoothness assumptions, the threshold should be cho-
sen proportional to h2. Then, the use of the pivoted Cholesky
decomposition will not significantly change the approxima-

tion quality of the finite element scheme when the grid size
is changed.

4.3 Image and Surface Registration

After the prior GPMM is approximated by a Karhunen–
Loève expansion, it can be turned into a registration algo-
rithm. Therefore, we have to define a reference image or 3D
surface ΓR and a target data set ΓT . We also have to define
a distance measure D between the objects. In the surface
registration setting, the distance function is often defined as
the distance between a point on the perturbed reference and
its corresponding closest point on the target surface [26].
Together with the distance measure, we can formulate the
registration problem as

argmin
u∈FK

D[ΓR, ΓT ,u] + η‖u‖2K, (13)

where ‖·‖K denotes the norm of the kernel functions’s repro-
ducing Hilbert spaceFK and η is a regularization parameter.
Replacing u by its low-rank approximation uM from (3), we
can restate the problem in the parametric form

argmin
α1,...,αM

D
[
ΓR, ΓT ,μ +

M∑

i=1

αi
√

λiφi

]
+ η

M∑

i=1

α2
i , (14)

which can be optimized with common methods, such as gra-
dient descent.

The next section shows that we can even omit the solution
of the eigenvalue problem, if we choose an alternate basis for
the subspace spanned by the Karhunen–Loève expansion.

5 Greedy GPMMApproximation with
Newton Basis

The conversion of the optimization problem in the reproduc-
ing kernelHilbert space from (13) to an optimization problem
with finitely many parameters in (14) has strictly been done
with a Karhunen–Loève expansion in previous work [26].
This automatically captures the most significant features of
the problem in the reproducing kernel Hilbert space into
the problem with finitely many parameters. However, the
Karhunen–Loève expansion has more structure than actu-
ally needed for the optimization in (14). Therefore, we may
choose a basis spanning the same subspace as the Karhunen–
Loève expansion which is cheaper to compute and has the
property of iterative refinement. Denoting the m-th eigen-
function obtained from the pivoted Cholesky decomposition
by φm,N and abbreviating

ΦN ,M (x) = [
φ1,N (x)

∣∣ . . .
∣∣φM,N (x)

]
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and ΣN ,M = diag(λ1,N , . . . , λM,N ), the Karhunen–Loève
expansion (3) can be written as

uM (x,α) ∼ μ(x) + αΣN ,MΦN ,M (x)ᵀ.

By associating (11) with its corresponding functions, we
deduce that

ΦN ,M (x) = LM (x)
[
v̌1,N

∣∣ . . .
∣∣v̌M,N

]
︸ ︷︷ ︸

=:Φ̌N ,M

,

which yields

uM (x,α) ∼ μ(x) + αΣN ,M Φ̌N ,M (x)ᵀ︸ ︷︷ ︸
=:α̃

LM (x)ᵀ.

We remark in particular that the coefficients α̃ are a linear
combination of the coefficients α. Thus, instead of using the
Karhunen–Loève expansion (3), and by denoting the func-
tion associated with the vector �i by �i,N , we can use the
expansion

uM (x, α̃) ∼ μ(x) +
M∑

i=1

α̃i�i,N (x),

see also [17], which spans the same subspace. The optimiza-
tion (14) then turns into

argmin
α̃1,...,α̃M

D
[
ΓR, ΓT ,μ +

M∑

i=1

α̃i�i,N

]
+ η

M∑

i=1

α̃2
i .

We can thus directly workwith theNewton basis given by the
column vectors of the low-rank approximation of the pivoted
Cholesky decomposition, cf. [30], and omit the solution of
any eigenvalue problems.

The Newton basis offers some new interesting possibili-
ties since one can easily expand the basis if a higher accuracy
is needed. Therefore, it is sufficient to proceed in the algo-
rithm of the pivoted Cholesky decomposition. If the basis
vectors need to be orthonormal, one can apply an orthonor-
malization method like the Gram-Schmidt algorithm, cf.,
e.g., [12]. As the pivotedCholesky decomposition, theGram-
Schmidt algorithm can be continued when the basis has to
be expanded.

We will show in the numerical experiments that this
greedy-type basis is a competitive alternative for registra-
tion compared to the original Karhunen–Loève approach by
[26]. It also gains a computational advantage, since the steps
for the computation of the Karhunen–Loève expansion from
Sect. 4.2 can be omitted.

The actual performance improvements very much depend
on the numerical effort for the computation of a single matrix

entry. The computation of the pivoted Cholesky decomposi-
tion is O(NM2), with a constant which is dominated by that
effort. The post-processing to obtain the Karhunen–Loève
expansion as described in Sect. 4.2 consists of the compu-
tation of the small matrix for the dense eigenvalue problem
(NM2 operations), the solution of the small eigenvalue prob-
lem (O(M3) operations, see [12]), and the computation of
the eigenvectors for the large system (NM2 operations). We
can thus save 2NM2 + O(M3) operations when using the
Newton basis rather than the Karhunen–Loève expansion.

However, from our perspective, the possibility to refine
the Newton basis greedily is much more valuable than the
actual performance improvements gained from omitting the
steps fromSect. 4.2. It is particularly attractive to increase the
approximation accuracy as illustrated in Fig. 2. In Fig. 2, two
random samples are visualized from models that are approx-
imated with increasing accuracy. We emphasize again that,
in contrast to the Karhunen–Loève approach, a refinement of
the model only needs the calculation of the additional basis
vectors instead of a full computation from scratch.

6 GPMMApproximation Experiments

6.1 Comparison of Generalizations for Surface
GPMM

We use a data set consisting of 39 registered face scans to
represent the ground-truth and as target surfaces for the regis-
tration. The data set is registered using the method proposed
by [2] which includes additional constraints to cope with
artifacts and noise of the raw 3D scans. To establish a fair
comparison between the fitting accuracy of the methods, we
create an experiment where only the generalization ability
of the models is evaluated. The model for this experiment
is defined with a scalar multi-scale B-spline kernel, which
is introduced by Opfer [29]. Given a univariate third-order
B-spline b3 and the function ψ(x) = b3(x1)b3(x2)b3(x3),
the kernel reads

kBSp(x, y) =
j∑

j= j

∑

k∈Zd

22− jψ
(
2 jx − k

)
ψ

(
2 jy − k

)
.

According to [29], this results in a valid, positive definite
kernel function on multiple scales. In our experiment, we
define the levels from l = −5 to l = −2 and refer to [26] for
details on matrix-valued B-spline kernels.

Taking the Nyström method proposed by [26] as a refer-
ence, we use the same kernel function to approximate three
different parametric models. For the reference, we sample a
uniform subset of 1000 points and approximate 1000 eigen-
functions, which, due to the expensive interpolation (9) to
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Fig. 3 Comparison of the generalization ability of three differently
approximated GPMM face models to 36 example faces: The error is
measured with the distance closest to the target surface in (mm). The
GPMM approximated with the Nyström method on 1000 eigenfunc-
tions is compared to the approximation of the same GPMM with 95%
and 99% accuracy. We clearly see that an approximation of the model
with 1000 eigenfunctions is only comparable to a model approximation
with 95% accuracy. Approximating the model with an accuracy of 99%
decreases the generalization error visibly

extend the eigenfunctions to all mesh points, amounts to the
borderline of feasibility. With the pivoted Cholesky method,
we create a model with a similar amount of basis functions
with a tolerance of ε = 0.05 (1200 basis functions) and a
more accurate model with a tolerance of ε = 0.01 (2200
basis functions). Especially, we are able to sample on all
grid points and can avoid the expensive interpolation of the
eigenfunctions. Since the face data set is registered and thus
in correspondence with the reference, we can define a direct
projection in the model space as

] argmin
α1,...,αM

Dc

[
ΓR, ΓT ,μ +

M∑

i=1

αi
√

λiφi

]
, (15)

where the distance function Dc consists of the squared
Euclidean distance of every point x with its corresponding
point on the registered target. This is a least squares problem
and the optimal solution for this problem can be computed
in closed form solution, which is shown in [1].

The 39 registered human faces are projected into all three
models and the average point-to-point distance is measured
and illustrated in Fig. 3. The Cholesky approximated model
with ε = 0.05 performs similarly as the Nyström model.
However, when the approximation accuracy of the Cholesky
model is increased to ε = 0.01, the model generalizes better
to the faces data set.

6.2 Spatially Varying Kernel Models

In this experiment, we compare the low-rank approxima-
tion methods on covariance functions, where the correlation
length varies depending on predefined regions in the domain

Ω . These type of covariance functions allow for the specifica-
tion of different kind of smoothness depending on the region.
In practice, this is especially useful for modeling different
levels of detail depending on the region. To approximate a
spatially varying model in practice, the Nyström approach is
not optimal for two reasons: (1) Locally detailed regions can
be approximated using a more compact representation than a
global model with small details, which is, however, not con-
trollable with the Nyström approach. This is illustrated in
Fig. 4, where the spatially varying kernel is approximated by
a fewbasis functions.Choosing the number of basis functions
in advance, as it would be the case for the Nyström method,
is difficult and unintuitive. (2) Since the Nyström approx-
imation only computes the eigenfunctions on a uniformly
sampled subset of points, it might well approximate coarse
correlations, but it is likely tomiss small deformation regions
if the subset is not densely sampled, which is not the case
when using the pivoted Cholesky algorithm. As an exper-
imental setup, we define a coarse kernel function kc(x, y)
and also a fine kernel k f (x, y), which are both defined as
Gaussian kernels with σ = 100 for kc and σ = 15 for k f .
Together with a function t : Ω → (0, 1), which activates
the fine kernel on a predefined region in Ω , we formulate a
spatially varying kernel as

ks(x, y) = kc(x, y) + t(x)k f (x, y)t(y). (16)

In Fig. 4, the kernels and their individual amount of basis
functions are visualized. By simply choosing the approxima-
tion error, we receive the right number of basis functions to
approximate the model.

One practical example for spatially varying kernels is the
construction of a registration prior for human faces or full
heads. In [10], it has been shownhow tomodel and apply such
a prior for face registration. In this experiment, we compare
a globally consistent kernel to a spatially varying kernel by
themeans of model approximation and registration accuracy.
Similar to 6.1, we use a data set consisting of 48 registered
full human head shapes as ground-truth target surfaces for
the registration. The data set is registered using the method
proposed by [2].

Except the spatial variance, we have built both deforma-
tion priors the same way with a multi-scale B-spline kernel
as its basis. A detailed description has been done in [10]. In
short, we have built kernel kSP, where a function emphasizes
more details for the face region than for the full head. A prac-
tical reason is that not much detailed information is expected
from this region and it has to be more robust against occlud-
ers, such as hair. The kernel kNSP, however, is built globally
ignoring the regions of the head.

Using the method proposed in this paper, we can measure
the effect of the spatially varying kernel using the approxima-
tion accuracywhenwe limit bothmodels to a fixed amount of
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Fig. 4 In this figure, random samples of different kernel functions are
visualized on a sphere with the radius of 100 mm. All of them are
approximated with the proposed method using an accuracy of 99.0%.
The method automatically selects the right amount of basis functions
for the givenmodel. The spatially varyingmodel in the bottom row only
contains local details at the specified region. This drastically decreases
the number of basis functions to reach 99.0% accuracy

basis functions (1000). Since the spatially varyingkernel only
allows correlations in the face and ear region, the represen-
tation of this model can be more compact, which allows for
more details at the face region. The spatially varying kernel
can be approximated 6%betterwith the same amount of basis
functions than used for the non-varying counterpart (Table 1).
The better accuracy of the model and the additional model-
ing information has a direct effect on the face registration
task itself. We have used both models to register 48 human
ground-truth heads and measured the registration accuracy
using the average corresponding point distance. Figure 5
shows an improvement of the full head as well as the iso-
lated face region. The spatially varying kernel enables more
details for the face region while keeping a smooth backhead.
Visually, this is also shown in Fig. 6, where the error in facial
details around the mouth and eye region has been decreased.

The models were computed on a Intel(R) Xeon(R) CPU
E5-2670 0 @ 2.60GHz with 32 cores with a computation
time of approximately 20 minutes. The head registrations
take about 15 minutes per case.

7 Medical Image Registration

With the following medical image registration experiments,
we measure the impact of approximation accuracy and the

Table 1 Model approximation accuracy of the head registration prior
models kSP and kNSP limited to 1000 basisfunctions

Global (kNSP) Spatially Varying (kSP)

Accuracy 92.5% 98.1%

The spatially varying kernel has been approximated 6% more accurate
than its global counterpart

Fig. 5 Themeasured accuracy of the spatially varyingmodel kSP and its
non-varying counterpart kNSP is shown. Left The error is measured on
the full head (Red and Blue) and only on the face region (Red). Right
The average distance in (mm) of the GPMM registration compared
against the ground-truth (Color figure online)

Fig. 6 A comparison between the registrations with and without a spa-
tially varying kernel. The registrations using the spatially varying kernel
(left) show less errors in the facial region than its non-varying counter-
part (right). For the face registration application in [10] the variation
at the ears were deliberately built smooth because to be robust against
outliers. For this reason, the error is large for both models in this region

approximation basis on the registration accuracy of a human
forearm CT data set. Also, we show a comparison of the
GPMM registration with a state-of-the-art multi-scale B-
spline image registration pipeline, which is implemented in
Elastix [23]. The registrations are performed on a data set
consisting of 27 CT images of the human forearm. The sur-
face of Ulna and the Radius have been manually segmented
by experts to provide a ground-truthmeasure of the accuracy.
The data has been rigidly aligned to one arbitrary example
of the data set using 4 landmarks and are provided in a res-
olution of 800 × 800 × 500. For the deformation model,
we selected the same kernel function as in [26], which per-
formed best in their experiment. To evaluate the accuracy of

123



Journal of Mathematical Imaging and Vision (2019) 61:443–457 453

Fig. 7 Acomparisonbetweendifferentmodel approximations using the
registration accuracy of the Ulna registration. Our proposed Cholesky
model with ε = 0.01 and ε = 0.001 error is comparable with the Nys-
tröm method with 500 eigenfunctions. However, the Pivoted Cholesky
method provides additional information about the approximation accu-
racy of the given GPMM

our experiments, we computed the average squared distance
error of the registered result to the ground-truth segmenta-
tions of the provided 27 CT images. For all the computations
we used a Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
with 32 cores. The prior model approximations (Nystroem
and PC) are computed offline once took less than an hour
in average. The approximation of the Newton basis model
is faster because it omits the last SVD step, as described in
Sect. 5. The registrations itself are both in the range of 30
min per example, which counts for multi-scale B-spline of
Elastix, but also for the GPMM registration.

7.1 Model Approximation Experiment

In this experiment,we compare the registration error between
the two different approximation methods; the originally
proposed Nyströmmethod and the pivoted Cholesky approx-
imation using the Newton basis and the finite element
discretization. In Fig. 7, the registration accuracy of the two
models is visualized. Ifwe approximate the pivotedCholesky
model with an accuracy of 99% (ε = 0.01), the registra-
tion results are similar to the Nyström where we chose 500
eigenfunctions. When the Cholesky model is approximated
with more accuracy (99.9%), a minor decrease of the error
is still visible, which also due to the larger flexibility of the
more accurate model, computed with pivoted Cholesky. The
advantage of the proposed method and the new basis are
not the approximation accuracy itself but the control over
the approximation error and the black-box usage. Using the
previously proposed Nyström example, the user will never
be sure if a change of the number of basis functions still
improves the GPMM approximation.

In Fig. 8, a direct comparison between the eigenbasis and
the Newton basis is shown. For bothmodels, we used the piv-

Fig. 8 A comparison of the registration accuracy of two different basis
for the GPMM approximation. Left The proposed Newton basis is less
computationally intensive and iteratively refinable. Right The origi-
nally used Eigenbasis, computed as in Sect. 4.2

oted Cholesky method to approximate the model with 99%
accuracy. For the first model, we kept the basis as the Newton
basis and for the second model we used the method shown
in 4.2 to compute the eigenbasis. Figure 8 shows that the
Newton basis performs similarly at the given image registra-
tion task, while it needs less computational steps, is greedily
computed and can be refined iteratively.

7.2 Image Registration Comparison

In this last experiment, we compare the proposed image
deformationmodels to a state-of-the-art B-spline registration
algorithm, which is implemented in Elastix [23]. In Fig. 9,
the GPMM registration approach with the proposed basis
functions is compared to the B-spline registration included
in Elastix [23].The goal of this experiment is to evaluate the
usage of the proposed method and basis functions in a prac-
tical setting against a state-of-the-art baseline. The Elastix
registration framework also contains a multi-resolution strat-
egy for the optimization, which is currently not present in the
GPMM framework. To achieve a fair comparison between
the deformation models, we compare the registrations in
two settings: (1) A comparison with a single-scale Elastix
with B-spline transformation, which omits the influence of
the optimization strategy and enables a fair comparison of
the models. (2) An experiment, where a landmark poste-
rior model is compared to the multi-scale B-spline. Here,
we show that even without an advanced optimization strat-
egy the GPMMmodels can perform similarly to the GPMM
models. When the B-spline method, provided in Elastix, is
used with a single B-spline scale, our proposed method per-
forms in a comparable range. To become more robust toward
local optima, the GPMM method allows to build a prior of
the deformations by defining a kernel that is more suited for
a specific task. As Lüthi et al. [26] have shown, this can be
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Fig. 9 Acomparison of the built registrationmodelswith a state-of-the-
art B-splinemethod, which is implemented in Elastix [23]. Ourmodel is
comparable with the single-scale approach. The inclusion of landmarks
to compute a posterior GPMM guides the optimization procedure well
and is comparable to the multi-scale version of Elastix [23]

done in multiple ways, as for example, making it spatially
varying, symmetric or to include landmarks. We show exem-
plary how adding landmark constraints to restrict the prior to
only deformations that match the landmarks, lead to a more
accurate registration accuracy, and at the same time, much
more robust results. For all the registration experiments we
used the proposed Newton basis, as shown in Sect. 5, which
show comparable performance to state-of-the-art registra-
tion methods, while having the desired properties for prior
modeling and the ability to refine the model approximation
iteratively.

8 Conclusion

We have presented a low-rank approximation method for the
Gaussian Process Morphable Model framework (GPMM)
with a controllable approximation error and a refinable and
greedy basis. An error-controlled parameterization of the
GPMM is a very important step to accurately specify and
approximate deformation models for registration. In this
paper, we show aGPMMapproximation method with signif-
icant advantages over the originally proposed method: The
method enables full control over the approximation error
and the greedy algorithm stops at a predefined accuracy. In
practice, this enables the user to treat the model parameter-
ization as a black-box while still having guarantees about
the approximation accuracy. As the second main contribu-
tion, we proposed a new basis for GPMM registration. We
showed that the Newton basis contains enough structure for
the registration problemoptimization and has two advantages
over the previously used eigenbasis: (1) The calculation of
this basis is computationally more efficient because it omits
the step of calculating an SVD and (2) the Newton basis are
computed greedily and thus allow for iterative refinement of

the approximation error without the re-computation of the
preceding basis vectors. The contributions in this paper add
some important missing pieces to the GPMM framework.
In contrast to the initial framework, we provide a practical
and theoretically sound way to control the approximation
error of the GPMMs, which has a large impact to the usabil-
ity in practice. We showed the registration accuracy of the
models in the context of human face surface registration eval-
uated on ground-truth registrations. Also, we demonstrated
the applicability of the method in the context of medical
image registration, where the human forearm was registered,
and showed that the method is competitive to state-of-the-
art registration methods. The core algorithms proposed in
this work are published open source in the Scalismo frame-
work [35].
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A Appendix

A.1 Advanced Nyström Schemes

Nyström schemes are suitable if the eigenfunctions of the
Karhunen–Loève expansion are only required in certain pre-
determined points x1, . . . , xN . For this purpose, the integral
operator (2) is approximated by a quadrature formula

∫

Ω

K(·, x)f(x) dρ(x) ≈
N∑

i=1

ωiK(·, ξ i )f(ξ i )

with quadrature points ξ i andweightsωi . The discrete eigen-
value problem then reads

CNystrφ̂m,N = λm,N φ̂m,N

with the system matrix

CNystr = [
ω jK(xi , x j )

]N
i, j=1

and the point values

φ̂m,N ≈ [
φm(xi )

]
i , i = 1, . . . , N .

Note that the system matrix CNystr is not symmetric in gen-
eral. Assuming positive quadrature weights, i.e. ωi > 0,
defining

MNystr = diag(
√

ω1, . . . ,
√

ωN )
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and setting φm,N = MNystrφ̂m,N yields a symmetric, gener-
alized eigenvalue problem

MNystrCM
ᵀ
Nystrφm,N = λm,NMNystrφm,N

with the matrix

C = [
K(xi , x j )

]N
i, j=1, (17)

see also [15]. As it turns out, the finite element scheme yields
an eigenvalue problem with a similar structure.

A.2 Finite Element Scheme on a Rectangular Grid

Finite element schemes for functions with values in three
dimensions rely on a finite dimensional subspace VN ⊂[
L2(Ω)

]3 with basis
{
ϕ1, . . . ,ϕN

}
to represent the eigen-

functions of the Karhunen–Loève expansion. To construct
such a finite dimensional space, we consider a uniform
rectangular grid Qh on Ω where each cell has a size of
h1×h2×h3. To each vertex x1, . . . , xN we assign a function
ϕi with the property

ϕi (x j ) =
{
1, i = j,

0, i 
= j,
i, j = 1, . . . , N , (18)

where on each cell Qh ∈ Qh , the basis function ϕi is a
trilinear polynomial, i.e.

ϕi (y)
∣∣
Qh

= a1 + a2y1 + a3y2 + a4y1y2

+ a5y3 + a6y1y3 + a7y2y3 + a8y1y2y3.

Here, the coefficients are uniquely determined such that (18)
holds. This means especially that the ϕi are only non-zero
in the eight cells with vertex xi . Note especially that all ϕi
are linearly independent, so we can define Vh ⊂ L2(Ω) as
the vector space spanned by the basis ϕ1, . . . , ϕN . A finite
dimensional subspace of

[
L2(Ω)

]3 is then given by Vh =
Vh × Vh × Vh .

A.3 Advanced Finite Element Schemes

Having a finite dimensional subspace at hand yields, cf., e.g.,
[15], the generalized eigenvalue problem

CFEMφm,N = λm,NMFEMφm,N (19)

with system matrices

CFEM = [(
TKϕ j ,ϕi

)
[L2

ρ(D)]3
]N
i, j=1,

MFEM = [(
ϕ j ,ϕi

)
[L2

ρ(D)]3
]N
i, j=1,

TK denoting the integral operator from (2), and the approxi-
mate eigenfunctions

φm(x) ≈ φm,N (x) =
N∑

i=1

(
φm,N

)
iϕi (x).

It thus remains to explain how to assemble these matrices.
Since the basis functions ϕi are non-zero only on a few

elements, the mass matrixMFEM is sparse. Inserting the def-
inition of TK into the definition of CFEM, we obtain

CFEM =
[ ∫

D

∫

D
K(x, y)ϕ j (y)ϕ

ᵀ
i (x) dρ(y) dρ(x)

]N

i, j=1
.

In order to compute this integral, it is very common in finite
element methods to replace K by its interpolation Kh in the
finite element space, i.e. we approximate

K(x, y) ≈
N∑

i, j=1

K(xi , x j )ϕi (x)ϕ
ᵀ
j (y).

Inserting this approximation into the definition of CFEM

yields

CFEM ≈ MFEMCMᵀ
FEM,

with the matrixC defined as for the Nyström scheme in (17).
The eigenvalue problem (19) thus turns into

MFEMCMᵀ
FEMφm,N = λm,NMFEMφm,N . (20)

A.4 Connection Between the Two Schemes

The two schemes can lead to the very same eigenvalue prob-
lem. In implementations of finite element schemes, there are
almost always quadrature formulas involved. Using piece-
wise linear ansatz functions and replacing the integrals by a
trapezoidal rule yields a diagonal matrix MFEM (this is also
referred to as “mass lumping”). The definition ofMNystr then
amounts to quadrature weights to a quadrature formula with
the vertices of the finite element mesh as evaluation points.
The two schemes are thus equivalent in this specific case.

A.5 Computing Karhunen–Loève Expansions using
Low-rank Approximations

Again, having a low-rank factorization C ≈ LMLᵀ
M of rank

M at hand, one can reduce the dimension of the eigenvalue
problems (20). For ease of notation, we do not distinguish
betweenMFEM andMNystr and consider the eigenvalue prob-
lem

MCMᵀφm,N = λm,NMφm,N . (21)
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By substituting the low-rank approximation C ≈ LMLᵀ
M

and vm,N = M1/2φm,N into (21), the eigenvalue problem
becomes

M1/2LMLᵀ
M (M1/2)ᵀvm,N = λm,Nvm,N .

Exploiting the fact that M1/2LMLᵀ
M (M1/2)ᵀ has the same

eigenvalues as Lᵀ
M (M1/2)ᵀM1/2LM = Lᵀ

MMLM , we obtain
an equivalent eigenvalue problem

Lᵀ
MMLM ṽm,N = λm,N ṽm,N .

Thismodified eigenvalue problemhas again dimensionM �
N and can thus be solved by standard eigensolvers for dense
matrices.
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