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Gaussian Process Morphable Models
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Abstract—Models of shape variations have become a central
component for the automated analysis of images. An important
class of shape models are point distribution models (PDMs).
These models represent a class of shapes as a normal distri-
bution of point variations, whose parameters are estimated from
example shapes. Principal component analysis (PCA) is applied
to obtain a low-dimensional representation of the shape variation
in terms of the leading principal components. In this paper,
we propose a generalization of PDMs, which we refer to as
Gaussian Process Morphable Models (GPMMs). We model the
shape variations with a Gaussian process, which we represent
using the leading components of its Karhunen-Loéve expansion.
To compute the expansion, we make use of an approximation
scheme based on the Nystrom method. The resulting model can be
seen as a continuous analog of a standard PDM. However, while
for PDMs the shape variation is restricted to the linear span of the
example data, with GPMMs we can define the shape variation
using any Gaussian process. For example, we can build shape
models that correspond to classical spline models and thus do
not require any example data. Furthermore, Gaussian processes
make it possible to combine different models. For example, a
PDM can be extended with a spline model, to obtain a model that
incorporates learned shape characteristics but is flexible enough
to explain shapes that cannot be represented by the PDM.

We introduce a simple algorithm for fitting a GPMM to a
surface or image. This results in a non-rigid registration approach
whose regularization properties are defined by a GPMM. We
show how we can obtain different registration schemes, including
methods for multi-scale or hybrid registration, by constructing an
appropriate GPMM. As our approach strictly separates modeling
from the fitting process, this is all achieved without changes to the
fitting algorithm. To demonstrate the applicability and versatility
of GPMMs, we perform a set of experiments in typical usage
scenarios in medical image analysis and computer vision: The
model-based segmentation of 3D forearm images and the building
of a statistical model of the face. To complement the paper, we
have made all our methods available as open source.

Index Terms—Statistical shape modeling, Gaussian processes,
Image analysis, Non-rigid registration

I. INTRODUCTION

The automatic interpretation and analysis of objects in an
image is at the core of computer vision and medical image
analysis. A popular approach is analysis by synthesis [1],
which asserts that in order to explain an image, we need
to be able to synthesize its content. This is achieved by
fitting a probabilistic model to an image such that one-to-
one correspondence between the model and the image is
established. The image can then be explained using the model
information. The better the model represents the structure of
the objects to be analyzed, the easier it becomes to fit the
model. For this reason statistical shape models have become

M. Liithi, T. Gerig and T. Vetter are with the Department of Mathematics
and Computer Science, University of Basel, Switzerland.

C. Jud is with the Medical Image Analysis Center, University Hospital
Basel, Switzerland.

very popular. An important class of statistical shape models
are point distribution models (PDMs). PDMs represent object
boundaries by their point positions. These are statistically ana-
lyzed using principal component analysis (PCA). Well known
types of PDMs include the Active Shape Model [4] and the
Morphable Model [5]. In its original formulation, the Active
Shape Model represents the object boundary using a few man-
ually defined landmark points. In the Morphable Model, the
boundary is represented by a dense set of points, for which the
correspondence is automatically determined by a registration
algorithm. A variety of other statistical shape models focus on
higher-order geometric features and/or analysis by statistical
techniques that recognize the benefit of understanding shape
relations in populations as being nonlinear [3]. We refer the
reader to the survey paper of Heimann et al. [2] for a detailed
overview of statistical shape models.

The focus of this work are point distribution models. PDMs
are linear, parametric models and hence are mathematically
convenient and easy to incorporate in image-analysis algo-
rithms. Since they can represent only shapes that are in
the linear span of the given training examples, they lead to
algorithms that are robust towards artifacts and noise. The
downside of this specificity is that to learn a model that can
express all possible target shapes, a lot of training data is
needed.

The main contribution of this work is that we introduce
a generalization of PDMs, which we refer to as Gaussian
Process Morphable Models (GPMM). We model a shape as
a deformation u from a reference shape I'z C R?; i.e. a shape
s can be represented as

s={z+u(z)|lr € Tr}

for some deformation u : Q@ — R3, with Q D I'p. We model
the deformations as a Gaussian process u ~ G P(pu, k) where
w2 — R3 is a mean deformation and k : Q x Q — R3%3 a
covariance function or kernel. Note that in contrast to classical
PDMs, our definition allows for the possibility to define the
boundary I'z continuously. The core idea behind our approach
is that we obtain a parametric, low-dimensional model by
representing the Gaussian process using the 7 leading basis
function ¢; : Q — R3 of its Karhunen-Logve expansion:

w=p+Y ai/Ngi, o € N(0,1) (1)
=1

(here, \; is the variance associated with each basis func-
tion ¢;). As we usually assume strong smoothness of the
deformations when modeling shapes, it is often possible to
achieve good approximations using only a few leading basis
functions, which makes the representation practical. The main
difficulty of this approach is to efficiently compute the leading
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eigenfunction/eigenvalue pairs. To this end, we propose to
use a Nystrom approximation and make use of a recently
introduced computational approach which is able to use a large
number of input points for computing the approximation [6].

The biggest advantage of GPMMSs compared to PDMs is
that we have much more freedom in defining the covariance
function. As a second main contribution we will show in
Section III how expressive prior models for registration can
be derived by leveraging the modeling power of Gaussian
processes. By estimating the covariances from example data
our method becomes a continuous version of a PDM. When we
have no or only little training data available, arbitrary kernel
functions can be used to define the covariances. In particular,
we can define models of smooth deformations using spline
models or radial basis functions, which are frequently used
in registration approaches. We show how a simple registration
approach, whose regularization properties are defined in terms
of a GPMM, allows us to use these models for actual surface
and image registration. Besides these simple models, GPMMs
also make it possible to combine different covariance functions
(or kernels) to mimic more sophisticated registration schemes.
We show how to construct priors that have multi-scale prop-
erties or can incorporate landmark constraints. We will also
show how to combine models learned from training data with
analytically defined covariance functions in order to increase
the flexibility of PDMs in cases where not sufficient training
data is available. Although in contrast to PDMs, GPMMs
model deformations defined on a continuous domain, we can
always discretize it to obtain a model that is mathematically
equivalent to a PDM. This makes it possible to leverage
the modeling flexibility of GPMMs also in classical shape
modeling algorithms, such as for example the Active Shape
Model fitting [4] algorithm or the coherent point drift method
[7].

To show the versatility and effectiveness of GPMMs we
performed experiments in two typical application scenarios
of GPMMs in medical image analysis and computer vision.
The first application scenario considers the model-based seg-
mentation and registration of CT images of the forearm. We
discuss how to build a model which is specifically tailored
to the task of forearm registration. In a second experiment
we performed Active Shape Model fitting and show how
combining the learned model with an analytically defined prior
can improve the segmentation accuracy. Further, we present
an application of GPMMs for 3D image-to-image registration
and compare the result to the popular B-spline registration
method implemented in Elastix [8]. In the second application
scenario, we discuss how GPMMs give rise to a new strategy
for building face models, which can make better use of the
available data and can reduce the need for tedious manual
annotations. Finally, we show on a qualitative example how
GPMMs can improve an existing face models to better fit faces
that are not represented in the original model.

As supplementary material to this article we provide a study
of the approximation properties of our numerical methods
and discussion how the approximation quality is influenced
by different choices of covariance functions. Furthermore, we
discuss how to choose the parameters of our method in order

to reach a given approximation quality. All our methods are
implemented as part of the open source software Statismo [9]
and Scalismo [10].

A. Related work

Our work can be seen as the unification of two different
concepts: On one hand, we extend PDMs such that they
become more expressive. On the other hand we model prior
distributions for surface and image registration. There are
works from both the shape modeling and the registration
community which are conceptually similar or have the same
goals as we pursuit with our approach. Most notably, the
work of Wang and Staib [11], which aims for extending
the flexibility of shape models, and the work by Grenan-
der et al. [12], who use Gaussian processes as priors for
registration are very close in spirit to our model. The idea
of Wang and Staib is to extend the flexibility of a PDM
by combining a learned covariance matrix used in a point
distribution model with covariance matrices that represent
other, synthetic deformations. This corresponds exactly to our
idea for combining covariance functions in the GP setting.
However, their method requires that the full covariance matrix
can be represented, which is only feasible for very coarsely
discretized shapes. In contrast, our method yields a continuous
representation and allows for an arbitrarily fine discretization
once the prior is evaluated in the final registration procedure.
On the registration side, the use of Gaussian processes for
image registration has been extensively studied in the 90s by
Grenander et al. (see the overview article [12] and references
therein). Similar to our approach, they propose to use a basis
function representation to span the model space. However,
in all these works the basis functions have to be known
analytically [13], or the initial model needs to be of finite
rank [14]. In our method we use the Nystrom approximation
to numerically approximate the leading eigenfunctions, which
makes it possible to approximate any Gaussian process and
thus to allow us to use arbitrary combinations of kernels in
our models. We believe that this modeling flexibility is what
makes this approach so powerful.

Besides the above mentioned works that aim at unifying
the concepts of priors for registration and shape modeling,
there is a huge body of literature on non-rigid registration, to
which our method is directly relevant. Non-rigid registration is
a fundamental problem in computer graphics, computer vision
and medical image analysis [15], [16], [17]. A comprehensive
overview of recent approaches for non-rigid registration used
in medical image analysis is given by Sotiras et al. [16]. In
computer vision, very similar registration methods to those
used in medical image analysis are used in optical flow com-
putation [15]. Registration approaches are also of importance
in other areas of computer vision, such as for example in
stereo matching [18] or finding corresponding matching points
in images [19]. An important part of all these methods is
to formulate appropriate prior assumption over the possible
deformation fields, and hence the ideas proposed in this paper
are directly applicable.

The space of admissible deformations represented by GP-
MMs is defined using a covariance function (or kernel). Math-
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ematically this space corresponds to a Reproducing Kernel
Hilbert Space (RKHS). There are many other works that
propose to model the admissible deformations for non-rigid
registration by means of a kernel and RKHS. Especially for
landmark based registration, spline based models and radial
basis functions have been widely used [20]. The algorithm for
solving a standard spline-based landmark registration prob-
lem corresponds to the MAP solution in Gaussian process
regression [21]. Using Gaussian process regression for image
registration has been proposed by Zhu et al. [22]. A similar
framework for surface registration, where kernels are used
for specifying the admissible deformation was proposed by
Steinke et al. [23]. While they do not provide a probabilistic
interpretation of the problem, their approach results in the
same final registration formulation as our approach. The use of
Reproducing Kernel Hilbert Spaces for modeling admissible
deformation also plays an important role for diffeomorphic
image registration (see e.g. [24], Chapter 9). In this context,
it has also been proposed to combine basic kernels for multi-
scale [25], [26] and spatially-varying models [27] for regis-
tration. However, the work focuses more on the mathematical
and algorithmic aspects of enforcing diffeomorphic mappings
rather than the modeling aspect.

Besides the work of Wang and Staib [11] there have been
many other works for extending the flexibility of PDMs. This
is typically achieved by adding artificial training data [28] or
by segmenting the model either spatially [29], [5] or in the
frequency domain [30], [31]. The use of Gaussian processes
to model the covariance structure is much more general
and subsumes all these methods. Another set of work gives
shape model based algorithms more flexibility for explaining
a target solution [32], [33], [34]. Compared to our model,
these approaches have the disadvantage that the model is not
generative anymore and does not admit a clear probabilistic
interpretation.

This paper is a summary and extension of our previous con-
ference publications [35], [36], [37]. It extends our previous
work in several ways: 1) It provides an improved presentation
of the basic method and in particular its numeric implementa-
tion. 2) It provides an analysis of the approximation properties
of this scheme. 3) It proposes new combinations of kernels
to combine point distribution models with GPMMs based on
analytically defined kernels. 4) It features a more detailed
validation including surface and image registration, as well
as Active Shape Model fitting.

II. GAUSSIAN PROCESS MORPHABLE MODELS

Before describing GPMMs, we summarize the main con-
cepts behind point distribution models, on which we will build
up our work.

A. Point Distribution Models

The main assumption behind point distribution models is
that the space of all possible shape deformations can be learned
from a set of typical example shapes {I'1,...,T',, }. Each shape
I'; is represented as a discrete set of landmark points; i.e.

Iy ={z} |z €eR3k=1,... N},

where N denotes the number of landmark points. In early
approaches, the points typically denoted anatomical land-
marks, and N was consequently small (in the tens). Most
modern approaches use a dense set of points to represent the
shapes. In this case, the number of points is typically in the
thousands. The crucial assumption is that the points are in
correspondence among the examples. This means that the k-th
landmark point z and ], of two shapes I'; and T'; represent
the same anatomical point of the shape. These corresponding
points are either defined manually, or automatically determined
using a registration algorithm. To build the model a shape
I'; is represented as a vector s; € R3Y, where the x,vy, 2—
components of each point are stacked onto each other:

;= (zll'cv leyv Illz? LR I?\/acv x?\/ya m3\/2)
This vectorial representation makes it possible to apply the
standard multivariate statistics to model a probability distri-

bution over shapes. The usual assumption is that the shape
variations can be modeled using a normal distribution

s~ N(p,%)

where the mean p and covariance matrix X are estimated from
the example data:

5= %Zg 2)

=1
1
n—1

I

x=5:=

Y G -5 -9 3)
=1

As the number of points N is usually large, the covariance
matrix 3 cannot be represented explicitly. Fortunately, as it is
determined completely by the n example data-sets, it has at
most rank n and can therefore be represented using n basis
vectors. This is achieved by performing a Principal Component
Analysis (PCA) [38]. In its probabilistic interpretation, PCA
leads to a model of the form

s=5+ Y a;\/diii; 4)
=1

where (u;,d;), i = 1,...,n, are the eigenvectors and eigen-
values of the covariance matrix S. Assuming that o; ~
N(0,1) in (4), it is easy to check that s ~ N (3, S). Thus, we
have a efficient, parametric representation of the distribution.

B. Gaussian Process Morphable Models

The literature on PDMs usually emphasizes the shapes
that are modeled. Equation 4 however, gives rise to a dif-
ferent interpretation: A point distribution model is a model
of deformations ¢ = S"" | a;\/d;i; ~ N(0,S) which are
added to a mean shape 5. The probability distribution is on
the deformations. This is the interpretation we use when we
generalize these models to define Gaussian Process Morphable
Models. We define a probabilistic model directly on the
deformations. To stress that we are modeling deformations
(i.e. vector fields defined on the reference domain I'g), and
to become independent of the discretization, we model the
deformations as a Gaussian process.
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Let I'r C R3 be a reference shape and denote by 2 C R?
a domain, such that I'r C ). We define a Gaussian process
u € GP(u, k) with mean function  :  — R3 and covariance
function k : Q x Q — R3*3, Note that any deformation
sampled from GP(u, k) gives rise to a new shape by warping
the reference shape I'y:

I'={z+d(z)|x € Tr}.

Similar to the PCA representation of the PDM used in (Equa-
tion 4), a Gaussian process GP(u, k) can be represented in
terms of an orthogonal set of basis functions {¢; }22,

where (\;, ¢;) are the eigenvalue/eigenfunction pairs of the
integral operator

Tf() = /Q k(. ) () dp(x),

and p(z) denotes a measure. The representation (5) is known
as the Karhunen-Loeve expansion of the Gaussian process
[39]. Since the random coefficients «; are uncorrelated, the
variance of u is given by the sum of the variances of
the individual components. Consequently, the eigenvalue \;
corresponds to the variance explained by the i-th component.
This suggests that if the \; decay sufficiently quickly, we can
use the low-rank approximation

a(z) ~ p(@) + Y aVhidi(@) ©6)
i=1

to represent the process. The expected error of this approxi-
mation is given by the tail sum

oo
>
i=r+1

The resulting model is a finite dimensional, parametric model,
similar to a standard statistical model. Note however, that
there is no restriction that the covariance function k needs
to be learned from examples, as is required for the sample
covariance matrix in (2). Any valid positive definite covariance
function can be used. As we will show in Section III this makes
it possible to define powerful prior models, even when there
is little or no example data available.

C. Computing the eigenfunctions

The low-rank approximation (6) can only be performed if
we are able to compute the eigenfunction/eigenvalue pairs
(i, Ai)i_. Although for some kernel functions analytic so-
lutions are available (see e.g. [13], [12]), for most interesting
models we need to resort to numeric approximations. A clas-
sical method, which has recently received renewed attention
from the machine learning community, is the Nystrom method
[21]. The goal of the Nystrom method is to obtain a numerical
estimate for the eigenfunctions/eigenvalues of the integral
operator

Tf() = /Q Kz, ) f(@)dp(a): )

i.e. the pairs (¢;, \;), satisfying the equation

Ni(a) = /Q Kz, 2)on(x) dp(z), Vo' € Q@ (8)

are sought. The Nystrom method is intended to approximate
the integral in (8). This can, for example, be achieved by
letting dp(xz) = p(z)dx where p(x) is a density function
defined on the domain (2, and to randomly sample points X =
{z1,...,2n}, 2, according to p. The samples (z;);=1, .., for
z' in (8) lead to the matrix eigenvalue problem

Ku; = X", (€))

where K;; = k(x;, ;) is the kernel matrix, u; denotes the i—th
eigenvector and A" the corresponding eigenvalue. Note that
since the kernel is matrix valued (k : Q x Q — R%*d) the
matrices K and kx are block matrices: K € R™*nd and
kx € R"*4 The eigenvalue A\ approximates J\;, while
the eigenfunction ¢; in turn is approximated with

bulw) = o

kx(2)u; = ¢i(z), (10)
where kx (z) = (k(z1,2),...,k(x,, x)).

Clearly, the quality of this approximation improves with the
number of points n that are sampled (see the supplementary
material for a detailed discussion). As n becomes larger
(i.e. exceeds a few thousand points), deriving the eigenvalue
problem (9) might still be computationally infeasible. Fol-
lowing Li et al. [6], we therefore apply a random SVD [40]
for efficiently approximating the first eigenvalues/eigenvectors
without having to compute the eigenvalues of the full N x N
matrix. Theoretical bounds of the method [40], as well as
its application for the Nystrom approximation [6], show that
it leads to accurate approximation for kernels with a fast
decaying spectrum. For our application, the error induced by
the random SVD is negligible compared to the approximation
error caused by the low-rank approximation and the Nystrom
method.

1) Accuracy of the low-rank approximation: It is clear
that our method depends crucially on the quality of the low-
rank approximation. Ideally, we would like to see the low-
rank model as a convenient reparametrization of the original
process, which would not affect the shape variations that are
spanned by our model. This is indeed the case when there are
strong correlations in the deformations, which is for example
the case when the modeled deformations are smoothly varying
over the domain. Fortunately, in shape modeling it is usually
justified to make strong smoothness assumptions, and thus the
approximation works well in practice. However, if we want to
model very small, local variations, the quality of the low-rank
approximation starts to deteriorate. In order not to digress from
the main theme of the paper, we have put a detailed discussion
of these issues into the supplementary material.

2) Computational complexity and practical implementa-
tion: From Equation (6) we see that for evaluating a de-
formation u at a point x, the sum over the r eigenfunctions
evaluated at x needs to be computed. This in turn requires n
evaluations of the kernel function to compute the nd—vector
kx (x) in (10). For a fixed covariance function the complexity
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Fig. 1. The 3D face surface used to illustrate the effect of different models.

is clearly linear in r and n. In shape modeling applications,
we often need to compute the deformations for all the points
of a densely represented surface, which might have hundred-
thousands of points. Depending on the kernel and the number
of eigenfunctions to be computed, the computation might take
several minutes. An effective strategy in such cases is to dis-
cretize the mean function ;. and eigenfunctions ¢, = 1,...,r
in an offline step for all the points of interest. We note that
for a fixed discretization Q = {1, ..., 2} we can define the
vectors

(/J(ﬁl)fc»/i(ml)yv/i(xl)zv ce 7/~L(xN)17/~L(‘TN)y7/‘(xN)Z)T

and
U =
((bi(xl)an (bi(xl)ya ¢i($1)z, .

and arrive at a model of the same mathematical form as the
classical point distribution model defined in (4). Consequently,
it can be used as a replacement in any algorithm that uses
classical point distribution models, and it has exactly the same
runtime complexity.

III. MODELING WITH KERNELS

The formalism of Gaussian processes provides us with a
rich language to model shape variations. In this section we
explore some of these modeling possibilities, with a focus on
models that we find most useful in our work on model-based
image analysis and in particular surface and image registration.
Many more possibilities for modeling with Gaussian processes
have been explored in the machine learning community (see
e.g. Duvenaud, Chapter 2 [41]).

To visualize the shape variations represented by a model,
we define a GPMM on the face surface (see Figure 1) and
show the effect that randomly sampled deformation from this
model have on the face surface.! Using the face for visualizing
shape variations has the advantage that we can judge how
anatomically valid a given shape deformation is.

A. Models of smooth deformations

A simple Gaussian process model is a zero mean Gaussian
process that enforces smooth deformations. The assumption of
a zero mean is typically made in registration tasks. It implies

I'This face is the average face of the publicly available Basel Face Model
[42].

LB (TN )y B3 (TN)y, i(Tn)2) "

Fig. 2. Samples using a Gaussian kernel with scale factor s = 10 and

bandwidth o = 100mm.

that the reference surface is a representative shape for the class
of shapes which are modeled or, in other words, that the shape
is close to a (hypothetical) mean shape. A particularly simple
kernel that enforces smoothness is the Gaussian kernel defined
by

kg(,y) = exp(=lz = yl|*/o?),

where o2 defines the range over which deformations are
correlated. Hence the larger the values of o, the more smoothly
varying the resulting deformations fields will be. In order to
use this scalar-valued kernel for registration, we can define a
matrix valued kernel as

k<x’y) =S I3><3kg(x7y)7

where the identity matrix 5,3 signifies that the x,y, z com-
ponent of the modeled vector field are independent. The
parameter s € R determines the variance (i.e. scale) of a
deformation vector. Figure 2 shows random samples from the
model for two different values of o. This construction can be
generalized by defining the matrix valued kernel as

k(x,y) = Ak, (z,y) AT, A € R3*3, (11)

which allows us to introduce anisotropic scaling and correla-
tions between the components.

Besides Gaussian kernels, there are many different kernels
that are known to lead to smooth functions. For registration
purposes, spline models, Elastic-Body Splines [43] B-Splines
[44] or Thin Plate Splines [45] are maybe the most commonly
used ones.

B. Point distribution models

An ideal prior for the registration of faces would only
allow valid face shapes. This is the motivation behind PDMs
[4], [5]. The characteristic deformations are learned from a
set of typical examples surfaces I'1,...,I",. More precisely,
by establishing correspondence, between a reference I'p and
each of the training surfaces, we obtain a set of deformation
fields {u1,...,u,}t,u; : Q — RY, where u;(z) denotes a
deformation field that maps a point on the reference x € I'p
to its corresponding point u;(z) on the i—th training surface.
A Gaussian process GP(1ppm, kppm) that models these char-
acteristic deformations is obtained by estimating the empirical
mean

ppom () = %Zuz‘(f)
i=1
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Fig. 3. Samples using a sample covariance kernel, which is learned from 200
training faces. All the random samples look like valid faces.

and covariance function
1 n
> " (ui(@)—ppom (@) (wi(y)—peom(y))©
= (12)
We refer to the kernel kppy as the sample covariance kernel
or empirical kernel. Samples from such a model are depicted
in Figure 3, where the variation was estimated from 200 face
surfaces from the Basel Face Model [42]. In contrast to the
smoothness priors, all the sampled face surfaces represent
anatomically plausible faces. The model that we obtain using
this sample covariance kernel is a continuous analog to a PCA
based shape model.

/fPDM(ﬂva) = n—1

C. Combining kernels

The real power of modeling with Gaussian processes comes
to bear if the “simple” kernels are combined to define new
kernels, making use of a rich algebra that kernels admit. In
the following, we present basic combinations of kernels to give
the reader a taste of what can be achieved. For a more thorough
discussion of how positive definite kernels can be combined,
we refer the reader to Shawe-Taylor et al. [46] (Chapter 3,
Proposition 3.22).

Multiscale models: If ky,...,k, : Q x Q@ — R are
positive definite kernels, then the linear combination

= Zaiki(aj,x’), a; €R

is positive definite as well. This provides a simple means of
modeling deformations on multiple scale levels by summing
kernels that model smooth deformations with kernels for more
local, detailed deformation. A particularly simple implemen-
tation of such a strategy is to sum up Gaussian kernels, with
decreasing scale and bandwidth:

= — ']

Z —I3x3 exp(— (0/1)

where s determines the base scale and o the smoothness and
l the number of levels. As shown in Figure 4, this simple
approach already leads to a multiscale structure that models
both large scale deformations as well as local details.
Reducing the bias in point distribution models: Due to
the limited availability of training examples, point distribution
models are often not able to represent the full shape space
accurately and thus introduce a bias towards the training
shapes into model-based methods [34]. One possibility to

k}MSan

5 )

Fig. 4. Samples using a kernel defined on multiple scales. The random sample
show large deformations which change the overall face shape, as well as local,
detailed shape variations.

Fig. 5. Random samples form a localized point distribution model. Whereas
locally the variations look anatomically valid, there are no global correlations
anymore, which makes the model more flexible.

avoid this problem is to provide an explicit bias model,
which is added to the point distribution model. Denote by
kppm : Q x Q — R4*9 the sample covariance kernel and
let kg : © x 2 — R be a Gaussian kernel with bandwidth
parameter o. A simple model to reduce the bias would be to
use a Gaussian kernel with a large bandwidth; i.e. we define

kp(z,2") = kppm(z, ') + slsxsky(z,2'),

where the parameter s defines the scale of the average er-
ror. This parameter could, for example, be estimated using
crossvalidation. This simple model assumes that the error is
spatially correlated; i.e. if a model cannot explain the structure
at a certain point, its neighboring points are likely to also show
the same error.

1) Localizing point distribution models: Another possibility
to obtain more flexible models is to make models more local
by breaking the global correlations. Recalling that the kernel
function k(x,2’) models the correlation between the points
x and z’. Setting the correlation k(z,2’) to 0 for z # o’
decouples the points and hence increases the flexibility of a
model. Such an effect can be achieved by a multiplication
of two kernel functions, which again results in a positive
definite kernel. A simple example of a local model is obtained
by multiplying a kernel with a Gaussian kernel with small
bandwith o. For example, by defining

ki(z,2") = kppm(z, ') © Isxsky(x, 2')

(where ® defines element-wise multiplication), we obtain a
localized version of a point distribution model. Samples from
such a model are shown in Figure 5. We observe that the
samples locally look like valid faces, but globally, the kernel
still allows for more flexible variations, which could not be
described by the model, and which may not constitute an
anatomically valid face.
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(a) s = 10,0 = 30mm

Fig. 6. Random samples from a posterior model, which has been obtained by
taking the Gaussian process model shown in Figure 2, and applying Gaussian
process regression to keep the points shown in red fixed.

D. Posterior models

In many applications we have not only information about
the correlations but know for certain points exactly how they
should be mapped. Assume for instance, that a user has
clicked a number of landmark points on a reference shape
Lr = {lk,...,1%)} together with the matching points on
a target surface Ly = {l%,...,I%)}. From the landmarks
we can compute the deformation @' for each point l% of the
reference shape:

L={(lgly = 1p)s- - (U 17 — 1)}
= {(Ig. 0"),..., (% ™)}

Let w ~ GP(u,k) be a Gaussian process model and as-
sume further that the observations 7’ are subject to Gaus-
sian noise € ~ N(0,0l3x3). It turns out that the distri-
bution u|lk,..., %, 4, ..., 4" is again a Gaussian process
GP(up, k) whose mean (i, and covariance k, are known in
closed form. This construction is known as Gaussian process
regression. We refer to [21], Chapter 2, and [35] for the
mathematical details. Figure 6 shows random samples from
such prior, where the points shown in red were fixed by setting
(@' = (0,0,0)1),i =1,...,n).

IV. REGISTRATION USING GAUSSIAN PROCESS
MORPHABLE MODELS

In this section we show how we can use GPMMs as prior
models for surface and image registration. The idea is that we
define a model for the variability of a given object Or C R?
and fit this model to a target object Oy C RY, which is either
represented as a surface or an image. Our main assumption is
that we can identify for each point xp € Og, a corresponding
point zp € Orp of the target object Op. More formally, it is
assumed that there exists a deformation u :  — R< such that

Or = {z + u(z)|r € Or}.

The goal of the registration problem is to recover the defor-
mation field u, which relates the two objects. To this end, we
formulate the problem as a MAP estimate:

arg maxp(U)p(OT|OR,u), (13)
where p(u) ~ GP(u,k) is a Gaussian process prior over
the admissible deformation fields and the likelihood function
p(Or|Og,u) is defined as

1
p(Or|OR,u) = Z exp(—n_lD[OR, Or,ul).

Here D is a metric that measures the similarity of the objects
Or and Opr, n € R is a weighting parameter and Z a
normalization constant. In order to find the MAP solution, we
reformulate the registration problem as an energy minimization
problem. Taking logs in (13) we arrive at the equivalent
minimization problem

argmin D[Og, O, u] — nlnp(u) (14)
Using the low-rank approximation (Equation (6)) we can
restate the problem in the parametric form

argmin D[Og, Op, u + Z ai\/Xi¢i] +1' Z 0412» (15)

Q1O : :
Loeeerfir i=1 i=1

where we used that the coefficients « in (6) are independent
and hence p(u) o< exp(—>_;_, a?).

The final registration formulation (15) is highly appealing.
All the assumptions are represented by the eigenfunctions
¢i,v =1...,r, which in turn are determined by the Gaussian
process model. Thus, we have split the registration problem
into three separate problems:

1) Modeling: Specify a model for the deformations by
defining a Gaussian process model for the deformations
u~ GP(u, k)

2) Approximation: Approximate the model by replacing in
parametric form @ = pu+ Y .,_; ;v Aig; ~ GP(u, k),
in terms of its eigendecomposition.

3) Fitting: Fit the model to the data by minimizing the
optimization problem (15).

The separation of the modeling and the fitting step is most
important, as it allows us to treat the conceptual work of
modeling our prior assumptions independently from the search
of a good algorithm to actually perform the registration.
Indeed, in this paper we will use the same, simple fitting
approach for both surface and image fitting, which we detail
in the following.

A. Model fitting for surface and image registration

To turn the conceptual problem (15) into a practical one, we
need to specify the representations of the reference and target
object O, Or and define a distance measure D between them.

We start with the case where the object O, O correspond
to surfaces I'p,I'r C R3. A simple measure D is the mean
squared distance from the reference to the closest target point,
ie.

D[FR,FT,u]:/F (CPry(z + u(2)))? dr,

where CPr,, is the distance function defined by
CPr,(z) = ||z — arg min|z — 2'||||.
z'el'r

Hence, for the case of surface registration, the registration
problem (15) becomes

argmin/ CPFT(:E—I—Zai\f)\i@(x))dx—i—nz:a?. (16)
Iy i=1

« i=1
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Note that for surface registration, we are only interested in
deformations defined on I'g. It is therefore sufficient to com-
pute the Nystrom approximation using only points sampled
from the reference I'p.

The second important case is image registration. Let Ig, I :
) — R be two images defined on the image domain 2. In this
case, we usually choose D such that it integrates some function
of the image intensities over the two images (see e.g. [16] for
an overview of different similarity measures). In the simplest
case, we can use the squared distance of the intensities. The
image registration problem becomes

arg min/Q[IR(a:) —IT(J;—I—Z iV hidi(2)))? dm—l—nZa?.

« i=1
a7

Note that to be well defined, the Gaussian process needs to
be defined on the full image domain ). Therefore, we sample
points from the full image domain 2 to compute the Nystrom
approximation.

Independently of whether we do surface or image regis-
tration, we can easily obtain a hybrid registration scheme by
including landmarks directly into the model using a posterior
model (cf. Section III-D). Furthermore, besides these straight-
forward algorithms for surface and image registration, we can
also directly make use of any algorithm that is designed to
work with classical PDMs, such as for example the Active
Shape Model fitting method [4]. This is possible because the
model (6) is of the same form as a PDM, with the only
difference that we have continuously defined basis function.
As discussed in Section II-C2 we can obtain the same repre-
sentation as a classical PDM by discretizing the basis functions
for a given set of points.

V. RESULTS

In this section we illustrate the use of GPMM s in typical ap-
plication scenarios from medical image analysis and computer
vision.

A. Model-based segmentation of forearm CT images

We start with a discussion on how to build an application-
specific prior model of the ulna bone using analytically defined
kernels. We use this model to perform surface registration
in order to establish correspondence between a set of ulna-
surfaces, and thus to be able to build a point distribution
model. In a second experiment we use this model to per-
form Active Shape Model fitting and show how increasing
the model’s flexibility using a GPMM improves the results.
Finally, we also show an application of GPMMs for image
registration.

1) Experimental setup: Our data consists of 36 segmented
images of the right forearm bones (ulna and radius). For 27
of these bones we have the original CT image. Using the
36 given segmentations, we extracted the ulna surface using
the marching cubes algorithm [47]. We chose an arbitrary
data-set as a reference and defined on each ulna surface 4
landmark points (two on the proximal, two on the distal part
of the ulna), which we used to rigidly aligned the original

images, the segmentation as well as the extracted surfaces to
the reference image [48]. Figure 7 shows a typical CT image,
and the forearm bones.

(a) CT Image Slice

(b) Surface

Fig. 7. A slice through a CT image of the forearm (left) and the extracted
bone surface from a ground-truth segmentation.

We integrated GPMMs in the open source shape modeling
software libraries Scalismo [10] and Statismo [9]. We used
Scalismo for model-building, surface registration and Active
shape model fitting. For performing the image registration
experiments, we used Statismo, together with the Elastix
toolbox for non-rigid image registration [8].

2) Building prior models: The first step in any application
of GPMMs is building a suitable model. In the first two
examples, we concentrate on the ulna. We know from prior
experience that the deformations are smooth. We capture this
by building our models using a Gaussian kernel

kés’o) (1'7 x/) = Sngg exp(—||$ - m/||2/0.2)7

where s determines the scale of the deformations and o the
smoothness. The simplest model we build is an isotropic Gaus-
sian model defined using only a single kernel kéwo’loo) (x,2").
The next, more complex model is an (isotropic) multi-scale
model that models deformations on different scale levels:
3
k:ms(x,x’) _ Z kéloo/i,lOO/i) (.1‘73;‘/>.

i=1
In the third model, we include the prior knowledge that for
the long bones, the dominant shape variation corresponds to
the length of the bone. Using the construction given in Equa-
tion (11) we can define the anisotropic covariance function

kams(x; Z‘/) _ RSkéLBO,lOU) (IE, I/)STRT
+ ké50"50) (xz,2') + k§30’30)(x, x'),

where R € R3*3 is the matrix of the main principal axis of
the reference and S = diag(1,0.1,0.1) € R3*3 is a scaling
matrix. Multiplying with the matrix SR has the effect that the
scale of the deformations in the direction of the main principal
axis (i.e. the length axis) is amplified 10 times compared to
the deformations in the other space directions. We compute
for each model the low-rank approximation, where we choose
the number of basis functions such that 99% of the total
variance of the model is approximated. Figure 8 shows the
first mode of variation of the three models. We observe that
for the anisotropic model, the main variation is almost a pure
scale variation in the length axis, while in the other models it
goes along with a bending of the bone.

Following Styner et al. we evaluate these three models
using the standard criteria generalization, specificity and com-
pactness [49]. Generalization refers to the model’s ability to
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y

(a) Gauss (b) Multi-Scale (c) Anisotropic

Fig. 8. The effect of varying the first two modes of variation for each model.

accurately represent all valid instances of the modeled class.
We will discuss it in the next subsection. Specificity refers
to the model’s ability to only represent valid instances of the
modeled bone. It is evaluated by randomly sampling instances
of the model and then determining their distance to the closest
example of a set of anatomically normal training examples.
Compactness, is the accumulated variance for a fixed number
of components. This reflects the fact that if two models have
the same generalization ability, we would prefer the one
with less variance. Table I summarizes the specificity and
compactness for these models. We evaluated both measures
once consider only the first component, and once with the full
model. We see the anisotropic model is more specific and more
compact than the other models, which means that it should
lead to more robust results in practical applications.

Model Specificity Compactness
Ist PC  Full model | 1st PC  Full model
Gauss 2.6 5.8 50.6 299.1
Isotropic Multi-Scale 2.3 6.1 51.1 317.0
Anisotropic Multi-Scale 1.9 2.9 51.1 137.1
TABLE I

THE SPECIFICITY AND COMPACTNESS VALUES COMPUTED FOR EACH OF
THE THREE MODELS. THE LOWER THE SPECIFICITY AND COMPACTNESS
THE BETTER.

3) Surface registration: To evaluate the generalization abil-
ity, we need to determine how well the model can represent
valid target shapes, by fitting the model to typical shape
surfaces. To fit the model, we use the surface registration
algorithm presented in Section IV-A. Figure 9 shows a boxplot
with the generalization results. We also see that the multi-scale
and the anisotropic model lead to similar results, but both
outperform model where only a simple Gaussian kernel was
used. That the anisotropic model can fit the models with the
same accuracy as the multi-scale model, despite being much
more compact, means that it is clearly better targeted to the
given application. We we will see in the last experiment, this
is a big advantage in more complicated registration tasks, such
as image to image registration.

4) Generalized Active Shape Model fitting: The well known
Active Shape Modeling approach [4] can be interpreted as
a special case of Gaussian process registration as introduced
in Section IV, where the model is a classical PDM (i.e. the
sample mean and covariance kernel (12) are used) and an
iterative algorithm is used to fit the model to the image.
Active Shape Model fitting is a very successful technique
for model-based segmentation. Its main drawback is that the
solution is restricted to lie in the span of the underlying point
distribution model, which might not be flexible enough to
accurately represent the shape. In our case, where we have
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Fig. 9. Generalization ability measured by fitting the different models to all
ulna surfaces.

only 36 datasets of the ulna available, we expect this to be a
major problem.

To build an Active Shape Model, we use the fitting results
obtained in the previous section together with the original CT
images as training data. Besides a standard ASM, we use
the techniques for enlarging the flexibility of shape models
discussed in Section III, to build also an extended model
with additive smooth deformations (cf. Section III-C), and a
“localized* model (cf. Section III-C1). In the first case, we
use a Gaussian kernel k_,(]?”loo) to model the unexplained part.
Also for localization we choose a Gaussian kernel kél’loo),
but this time with scale 1, in order no to change the variance
of the original model. In both cases, we approximate the
first 100 eigenfunctions. Figure 10 shows the corresponding
fitting result from a leave-one-out experiment. We see that
both the extended and the localized model improve the results
compared to the standard Active Shape Model. We can also
observe that by adding flexibility, the model becomes less
robust and the number of outliers (i.e. bad fitting results) in-
creases. We can remedy that effect by incorporating landmark
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Fig. 10. Accuracy of the Active Shape Model fitting algorithm for three
different models.

constraints on the proximal and distal ends, by computing a
posterior model (see Section III-D). This has the effect of
fixing the proximal and distal ends and prevents the model
from moving away too far from the correct solution. Figure 11
shows that this has the desired effect and the combination of
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including landmarks and increasing the model flexibility leads
to clearly improved results.
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Fig. 11. Accuracy of the Active Shape Model fitting algorithm for three
different models, when 4 landmarks at the proximal and distal ends were
used to make the models more robust.

5) Image to image registration: In the next experiment we
show that our model can also be used to perform 3D image
to image registration, using the full forearm CT images. We
choose one image as a reference and build a GPMM on the
full image domain. In the application of GPMMs to image
registration, we have to be careful about the image borders,
as the basis functions are global, and hence values at the
boundary might strongly influence values in the interior. We
therefore mask the images and optimize only on the bounding
box of the bones. We use a simple mean squares metric
and a stochastic gradient descent algorithm to optimize the
registration functional (17). To evaluate the method, we warp
the ground-truth segmentation of the forearm bones with the
resulting deformation field and determine the distance between
the corresponding surfaces. Figure 13 shows the results for
the same three models as used in the first experiment. In
this example, where the optimization task is much more
difficult, we see that the anisotropic model, which is much
more targeted to the application, has clear advantages. We
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Fig. 12. Accuracy of image to image registration results performed with
different models, compared on a ground-truth segmentation of the bones.

also compared our method to a standard B-Spline registration
method [50], which is the standard registration method used in
Elastix. First, we use a B-spline that is only defined on a single

10

scale level. As expected, since B-Splines are not application-
specific, the registrations are less robust and the accuracy is
worse on average (see Figure 13). In its standard setting,
Elastix uses a multi-resolution approach, where it refines the
B-Spline grid, in every resolution level. This corresponds
roughly to our multi-scale approach, but with the important
difference that new scale levels are added for each resolution
level. This strategy makes the approach much more stable
and, thanks to the convenient numerical properties of B-
Splines, allows for arbitrarily fine deformations. As shown
in Figure 13 in this multi-resolution setting, the B-Spline
registration yields more accurate results on average than our
method, but, as expected, is less robust. It is interesting
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Fig. 13. Accuracy of image to image registration results performed with our
best model, compared to a single-level and multi-level b-spline registration
method implemented in Elastix.

to compare the two strategies in more detail. While our
model has 500 parameters, the final result of the B-Spline
registration has 37926 parameters. Thanks to the convenient
numerical properties of B-Splines, more could be added if
to increase the model’s flexibility even further. This explains
why the B-Spline approach can yield more accurate solutions
than GPMMs. With GPMMs, the number of parameters is
limited by the number of eigenfunctions we can accurately
approximate. If the image domain is large compared to the
scale of the features we need to match, this quickly becomes
a limitation. We refer to the supplementary material for a more
detailed discussion of the approximation quality.

B. Face modeling using GPMMs

Point distribution models of the face, such as the Basel Face
Model [51] or the Large Scale Facial Model [52], are of great
importance in computer vision. As humans perceive even tiny
errors in the registration as unnatural, these models are usually
learned from manually cleaned face scans, where all the salient
points are annotated with landmarks. In this experiment we
show a strategy for model building using GPMMs, which
can make better use of the available data and requires less
annotation. The idea is to build a point distribution model
already once a few scans are registered. This core model
is extended with an analytically defined prior and used in
subsequent registration. Since this new prior already contains
scans where the right correspondences has been enforced, we
expect that it leads to better correspondence.
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(c) Example scan

(a) Reference (b) Example scan

Fig. 14. (a) A reference face with annotated landmarks and a masked out
region (in red). The mask region determines an area where the data quality is
particularly bad, and special treatment in the registration algorithm is required.
(b) and (c) Two example scans of the BU3D with annotated landmarks. Note
that the number of annotated landmarks in the scans varies depending on the
data quality.

To test this hypothesis, we use 100 face scans from the
publicly available Bu3D database [53]. The reference face and
two example scans are shown in Figure 14. The scans are
manually annotated with landmarks. The number of landmarks
differs, depending on the quality of the scan, but all of them
have at least the lips, nose tip and eye corners annotated. We
compare three different strategies for registration. In the first,
we perform a basic registration using no landmarks. In the
second, we use all the annotations. In the third, we use 10 of
the registration results that were obtained using the landmarks,
to build the core model. The basis for all three registrations is
the following prior model, which is a sum of Gaussian kernels
defined on different scale levels:

> — 2|

30 o
P (R0 2

ks (x, 2') = -
i=0 2

)%)Zsx3. (18)

To include the landmarks in the second strategy, a posterior
model is built (Cf. Section III-D). The extended model is built
by adding to the sample covariance kernel kppy, computed
from the registered surface scans, a scaled version of the
multi-scale kernel skn. The scaling factor s was determined
by computing the maximal reconstruction error e over all
the scans and then choosing s such that 3\/skns(z,2) =
The reference shape (Figure 14a) is registered onto the target
scans using the surface registration algorithm described in
Section IV-A.?

Figure 15 shows the average error of the registration for the
three different strategies. All three strategies lead to an accu-
rate fit with an average surface distance to the ground-truth
scan of less than 0.3 mm. The quality of the correspondence
however, greatly differs. Figure 15b shows that the distance at
the annotated landmarks points. As expected, the registration
that explicitly includes all the landmark constraints is clearly
best. The average error in this case corresponds to the modeled
uncertainty for the landmarks. More interestingly, we see that
including the registered example scans into the prior clearly
leads to improved correspondences.

>To make the optimization robust to the missing data in the scans (Fig-
ure 14b, 14c), we exclude points in the ear region (marked in red) and those
whose closest point in a target shape is a boundary point of the target mesh.

11
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(a) Average distance to
ground-truth surface

(b) Correspondence error
on landmarks

Fig. 15. (a) shows that all three models accurately fit the target surface. in
(b) The correspondence, however, is improved if we use a core model.

Fig. 16. Three sample from the Basel Face Model, extended with additional
variability using a Gaussian kernel with small variance. Even though synthetic
variation was added, the samples still correspond to anatomically valid face
shapes.

As a final experiment, we show how increasing the flexi-
bility of the model can be used to work around limitations of
already existing high quality face models, such as for example
the Basel Face model (BFM) [51]. The BFM was built using
mainly young people, and hence does not generalize well when
registering older faces. To work around this limitation, we
extend the shape variations modeled by the BFM with smooth
deformations given by a Gaussian kernel with a very small
scale:
|l — o'

302 )

Since we choose the scale of the added deformation small,
the model variation is dominated by the variation in the Basel
face model and hence samples of the new model still look
realistic (Figure 16). Yet, the model is much more expressive
and better generalizes to unseen faces. This is illustrated in
Figure 17 where the best reconstruction obtain with the BFM
is compared to the best reconstruction obtained using the
extended model.

If(l’, 33/) = kBFM('r?x/) +1.0 eXp(_

VI. CONCLUSION

We have presented Gaussian Process Morphable Models, a
generalization of classical point distribution models. GPMMs
extend standard PDMs based on object boundary positions in
two ways: First GPMMs are defined by a Gaussian process,
which makes them inherently continuous and do not force
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Fig. 17. Best reconstruction of a target face (a) with the Basel face model
(b) and the extended model (c).

an early discretization. More importantly, rather than only
estimating the covariances from example datasets, GPMMs
can be specified using arbitrary positive definite kernels. This
makes it possible to build complex shape priors, even in the
case where we do not have many example dataset to learn
a point distribution model. Similar to a PDM, a GPMM is a
low-dimensional, parametric model. It can be brought into the
exact same mathematical form as a PDM by discretizing the
domain on which the model is defined. Hence our generalized
shape models can be used in any algorithm that uses a standard
shape model. To make our method easily accessible, we have
made the full implementation available as part of the open
source framework Statismo [9] and Scalismo [10].

Our experiments have confirmed that GPMMs are well
suited for modeling prior shape knowledge in registration
problems. As all prior assumptions about shape deformations
are encoded as part of the GPMM, our approach achieves
a clear separation between the modeling and optimization.
This separation makes it possible to use the same numerical
methods with many different priors. Furthermore, as a GPMM
is generative, we can assess the validity of our prior assump-
tions by sampling from the model. We have shown how the
same registration method can be adapted to a wide variety
of different applications by simply changing the prior model.
Indeed, Gaussian processes give us a very rich modeling
language to define this prior, leading to registration methods
that can include many types of different prior knowledge,
including models learned from examples. From a practitioner’s
point of view, the straight-forward integration of landmarks
may also be a valuable contribution, since it enables to develop
efficient interactive registration schemes.

The most important assumption behind our models is that
the shape variations can be well approximated using only a
moderate number of leading basis functions. As shape defor-
mations between objects of the same class are usually smooth
and hence the deformations between neighboring points highly
correlated, this assumption is usually satisfied. Furthermore for
most anatomical shapes, fine detailed deformations only occur
in parts of the shape. GPMMs give us the modeling power to
model these fine deformations only where they are needed. Our
method reaches its limitations when very fine deformations
need to be modeled over a large domain, as it is sometimes
required in image registration. In this case the approximation
scheme becomes inefficient and the approximations inaccurate.

Error (mm)
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An interesting extension for future work would be to devise a
hierarchical, multi-resolution approach, which would partition
the domain in order and perform separate approximation on
smaller sub-domain. In this way, the modeling power of
GPMMs could be exploited to model good priors for image
registration, while still offering all the flexibility of classical
image registration approaches.

We hope with this work to bridge the gap between the
so far distinct world of classical shape modeling, where all
the modeled shape variations are a linear combination of the
training shapes, and the word of registration, where usually
overly simple smoothness priors are used. We believe that
it is the middle ground between these two extremes, where
shape modeling can do most for helping to devise robust and
practical applications.
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