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Abstract

We propose a novel narrow baseline multiview stereo surface reconstruction method
that is specifically aimed at complex shapes of biological origin that show many thin pro-
trusions and curved occluding contours. Our method is built around fitting local quadrics
to occluding contours and it thus avoids any planarity assumptions that are common to
other state of the art methods.

We describe a complete pipeline that begins with calibrated noisy images and pro-
duces a final watertight surface. We present a novel technique to detect pixel precise
internal contours and to fit local quadrics to them. This procedure is designed to deal
with curved occluding contours, and it is very robust to noise and to slow changes in
surface radiance. Our method can even reconstruct shapes from sequences where the
illumination is attached to the observer and not the scene. We demonstrate the potential
of our method by reconstructing the intricate shape of a tiny insect from images taken
under a scanning electron microscope.

1 Introduction
Multiview stereo, the estimation of shapes from sets of images, has been one of the core
problems of computer vision for decades. The field has seen continuous progress over the
years, producing methods able to reconstruct shapes of increasing complexity with increas-
ing precision under increasingly challenging conditions. By complexity, we specifically refer
to the density of contours seen in the images. While simple, convex objects are defined by
their silhouettes, complex shapes feature many internal contours that outline many protrud-
ing, often thin parts of the object. In recent years, a number of methods have been proposed
that, in addition to photoconsistency cues, exploit the information contained in the internal
contours [7, 8, 11, 13]. This enables those methods to reconstruct highly complex shapes at
a precision approaching the resolution of the original images.

Still, most current state of the art methods make a number of different, either explicit or
implicit planarity assumptions along the way that make them inadequate to deal with com-
plex organic geometry. By organic geometry we refer to shapes that have been created in a
natural growth process, instead of being engineered by humans. Such geometry rarely shows
any sharp hinges, but instead many curved areas that give rise to curved contours. Such con-
tours do not correspond to static lines on the surface of the object - instead, the corresponding
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Figure 1: An overview of our method. The image sequence is split into batches, and for
every batch, we compute a set of initial sparse depth samples. From those, we estimate a
dense depth map that conforms to the image structure and we use it to detect contours. The
contours from all the batches are combined to fit a set of unconstrained local quadrics in
space. The final surface is then optimized so as to conform to the quadrics in the curved
areas and to the depth maps in the flat areas.

lines shift along the surface as the vantage point changes. Furthermore, organic objects are
often partially untextured, so that the contour of a protruding curved feature can be the only
evidence of that feature.

The method we are proposing aims to reconstruct such complex organic surfaces at the
level of precision allowed for by the resolution of the images. We assume that that level of
precision can only be attained if the internal contours are considered as a source of informa-
tion. Our method is built around the explicit estimation of local quadrics from the observed
contours. We only assume that the quadric parameters vary smoothly across space, but we
make no further assumptions on the curvature of that quadric. This ensures that our model
will treat arbitrarily curved shapes as equally likely, and it allows us to reconstruct even very
thin cylindrical structures as long as we can detect their contours.

Our contribution is a complete reconstruction pipeline for the image-based reconstruc-
tion of complex organic surfaces. That pipeline comprises (1) a novel initial per-pixel depth
estimation technique that can deal with curved contours and that generates both a sparse
depth map and a denoised version of the image, and (2) a novel method to detect contours
and to fit quadrics to them. Our method then computes the final surface by combining the
quadrics with a traditional regional term obtained from dense depth maps as input to a Pois-
son reconstruction method. The result is a watertight surface that conforms to the quadrics
in the highly curved areas and to the depth maps in the even areas.

To detect the contours, we first compute a dense depth map that conforms to the structure
of the image and that interpolates between the sparse depth samples. The dense depth map
computation is equivalent to a process of inference that propagates depth information from
the edges of the image into the smooth areas. Only through that process can we learn which
edges in the image correspond to contours and which to lightness changes on the surface. It
also tells us the orientation of the contours.

In order to estimate the initial per-pixel depth values in the presence of curved contours,
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our method can only rely on a small subset of the images that have been taken from a similar
vantage point. As a consequence, our algorithm is also very robust to deviations from Lam-
bertian reflectance, and it can even work under conditions where the illumination is static
with respect to the observer and not the scene. Note that in certain imaging modalites (e.g.
electron microscopy) and circumstances (e.g. deep sea exploration), this is the only feasible
configuration.

Finally, we demonstrate the abilities of our method by reconstructing the shape of a cat
flea (ctenocephalides felis) from images taken under a scanning electron microscope.

2 Previous Work

Traditional multiview stereo (MVS) algorithms that rely solely on photoconsistency infor-
mation have difficulties reconstructing complex geometry, i.e. geometry with a large number
of internal contours. The reason is that such algorithms rely on comparisons between image
areas in different images, be it by fitting planar patches in 3D space [6] or by estimating a
depth map using matching windows [9, 15]. This is only sensible if the entire area being
considered belongs to the same suface of the object - close to the contours, this estimation is
unreliable.

It has been shown that the inclusion of additional silhouette information can greatly im-
prove the precision around the external contours of the object, but it requires either an a
priori segmentation of the image into a foreground and a background [4, 5, 14], or at least
a capture setup where the two areas are roughly distinguishable by color [10]. It was only
very recently that the first methods have been published that also exploit the information
contained in the internal contours [7, 8, 11, 13].

In [7], the autors reformulate the reprojection error functional to include internal con-
tours, to enable local surface optimization algorithms to adhere to the observed contours.
Kim et al. [8] propose a method of estimating pixel precise depth maps using an iterative
scheme. Their method begins with the estimation of the optimal depth of every pixel. Next,
a set of inlier images is determined in which that point is visible and from that set, the next
expected color of the pixel is averaged, leading to the set of inliers for the next iteration. Shan
et al. [13] extend the patch based PMVS framework [6] to include information from internal
contours. They do so by estimating depth maps from planar PMVS patches. Finally, Liu
and Cooper [11] propose an MRF based method that explicitly solves an inverse ray tracing
problem. Their method is currently not applicable to large scenes due to its extraordinary
memory footprint.

Although much progress has been made on the reconstruction of complex geometry,
there has been comparatively little recent work on curved, organic geometry. In 2000, Cross
and Zisserman [3] have written about the reconstruction of quadrics from contours and point
correspondences. Their work assumes the entire object to be one single quadric. In 2003,
Cipolla et al. [2] proposed a quadric based surface model to track human hands. In the same
year, Xie et al. [16] describe a method of fitting smoothly varying quadrics to a noisy point
cloud in order to reconstruct the original surface. Their method is aimed at arbitrary point
clouds and it does not take images into consideration.
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3 Reconstruction Pipeline
In the following section, we will describe the individual processing steps that begin with a
set of calibrated images and in the end produce the final watertight surface.

We assume that we are given the calibration in the following form. For every image i, we
are given a 3×4 matrix Pi = (p1, p2, p3)

T that maps points in homogeneous 3D coordinates
to points in the projective plane, such that point x = (x1,x2,x3,1)T in space corresponds to
point (y1,y2) in the image, with yk pT

3 x = pT
k x, k ∈ {1,2}.

3.1 Initial Depth Samples
Our reconstruction pipeline begins with the estimation of intial sparse depth maps for a sub-
set of the images. Most MVS methods begin with a similar depth estimation step, but almost
all of them consider image areas larger than one pixel. The method by Kim et al. [8] is the
only recent attempt known to us to estimate the depths of individual pixels independently of
each other. Unlike theirs, our method is non-iterative and it estimates the depths simultane-
ously to a denoised version of the image. Our method can therefore exploit image edges that
are too faint to be detected amid the noise of one single image.

The purpose of those depth maps is to capture both the actual depths of surface features
and the momentary depths of curved contours. Curved contours do not project onto static
curves on the surface of the object, as do contours generated by hinges. Instead, those curves
slide across the surface as the vantage point changes. In order to capture the momentary
positions of the curves, we can thus only consider a small selection of images taken from a
similar vantage point. If we were to use the entire sequence, then our estimates at the ends
of the the sequence would be biased towards the momentary position around the middle of
the sequence.

For this reason, we split the image sequence into batches, and we use only images from
one batch to compute a sparse depth map corresponding to the central image of that batch.
The batch needs to cover a large enough range of viewing directions so as to allow for a
reasonable depth estimation, and it must contain a sufficient number of images to overcome
the noise - otherwise, we want it to be as short as possible. Although we tacitly assume
that we are dealing with an ordered sequence of images, that assumption is only needed to
separate the set of images into batches. In the case of an unordered set of images, the batches
could be replaced by clusters of images. From this point forward, it is no longer assumed
that the images belong to an ordered sequence.

The sparse depth map estimation is designed to be very robust to pixel noise and to
still produce pixel precise results. It works on each pixel independently, and it consist of
computing both the most likely color and the most likely depth value there. We assume
that the observed color components are mutually independent, and that the value of each
component c is normally distributed around the actual value c0. We further assume that the
standard deviation of that distribution is an affine linear function of c0:

c∼N (c0,σ(c0)
2), σ(c) = σ0 + cσm (1)

The parameters σ0 and σm are estimated from the smooth areas of the images.
For every pixel (x,y), we discretize the corresponding ray over the area of interest. This

yields a sequence of spatial positions rz, that correspond to color values cz,i in all the images
i. We now also discretize over the color domain, and for every color value c, we compute its
likelihood given the observed values cz,i.
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Figure 2: The denoising effect of our depth estimation process. The original image (left) and
the denoised version (right). The corresponding batch contained 50 images. The contrast of
the displayed images has been enhanced to emphasize the noise.

Since we are dealing with complex geometry, we need to assume that the surface point
is occluded in some images. For that reason, we make our estimation robust to outliers by
assuming that the probability of observing a certain color c can be no less than a threshold
value pτ , no matter how different c is from the true color c0. This allows our model to explain
away features of arbitrary color that can occlude the point in any image. For color values
close to c0, we still assume the aforementioned noise model. In log-space, this truncated
normal distribution is then equivalent to a truncated parabola as the cost function.

The likelihood of color c given a set of observations cz,i is then equal to,

p(c|cz,i) = ∏
i

e−E(c,cz,i) (2)

E(c|ĉ) = ∑
k∈{r,g,b}

max((ck− ĉk)
2/σ

2(ck), log(pτ)) (3)

Only for the center image of the batch, the one for which we are computing the depth map, we
set pτ = 0, since we know that the point cannot be occluded in the reference frame - the point
visible there is always the point we mean. For all other frames, we have assumed pτ = e−4,
which is equivalent to cutting off the normal distribution at two standard deviations.

Evaluating this probability p(c) at all discrete color values c allows us to pick the most
likely color c∗z . We assume the probability of the most likely color, p(c∗z |czi) =: p̄z, to be the
probability of the depth z itself. Next, we normalize that distribution over the range of all
considered depths z, which yields the values pz . This is equivalent to assuming that one of
the depths must be the correct one. We determine the most likely depth z∗, and we compute
the variance around that depth, σ2

d =∑z pz(z−z∗)2. This implies our confidence of the depth,
κ0 = σ

−2
d . We have found the variance to be a very informative measure of the confidence

of a depth, since it considers the spatial relation of the different depths with respect to each
other. A large pz at a depth close to z∗ will increase the variance far less than the same value
at a vastly different depth.

Finally, we store the optimal depth values z∗ as the depth estimate of pixel (x,y), κ0 as its
confidence and the optimal color value at depth z∗(x,y), c∗z∗ , as the denoised image value, c̄.
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Figure 2 demonstrates the striking denoising effect of this procedure. Note specifically that
faint patterns are being restored that are originally buried in noise.

3.2 Dense Depth Map
Next, we compute a dense depth map for every batch. That depth map is intended to fit the
estimated sparse pixel depth values weighted by their confidence, and to be smooth in areas
where the denoised image is smooth. The approach is similar to the one presented in [13].
We compute the dense depth map u(x,y) by minimizing

∑
x,y

κ0(x,y)(u(x,y)− z∗(x,y))2 +µD

∫
Ω

(g(x,y) ·∇u(x,y))2ds, (4)

with the regularization weight g derived from the denoised image values c̄

g(x,y)i = exp(− 1
λ 2 ∑

k∈r,g,b
(

∂

∂ i
(c̄k(x,y)))2), i ∈ {x,y}, (5)

where λ describes the sensitivity to image structure, and µD the amount of regularization.
Analogously to the depth map u(x,y), we also compute the confidence map κ(x,y), by re-
placing z∗(x,y) in equation 4 by the confidence itself, κ0(x,y).

The optimization is performed using a multiscale Jacobi method. This procedure gener-
ates a depth map with discontinuities that coincide with those in the denoised color value.
It also carries a strong fronto-planarity bias, and thin protruding features are often shifted
towards the background. It does, however, tell us the locations of the depth discontinuities
in the image.

3.3 Contour Detection
This is the final operation on one single batch of images. We seek to detect a set of image
points that are likely contour candidates, and we wish to estimate their momentary depth.
Later, we will use this contour candidates to fit local quadrics.

To detect the contours, we apply the Canny edge detector [1] to the dense depth map u,
which provides us with a set of potential contour pixels (xc,yc) of maximal local curvature.
For every such contour candidate, we estimate its momentary depth from the initial sparse
depth samples, and not from the dense depth map. This way, we prevent the planarity bias
of the depth map to enter into our quadric estimates. Also, it helps to preserve small features
that are pulled towards the background by the depth map regularization. We estimate the
momentary depth of every contour as,

d(xc,yc) =
1

wt(xc,yc)
∑

x,y∈N(xc,yc)

w(x,y)z∗(x,y) (6)

wt(xc,yc) = ∑
x,y∈N(xc,yc)

w(x,y) (7)

w(x,y) = κ0(x,y)exp(− 1
σ2

c
((x− xc)

2 +(y− yc)
2)) H(u(xc,yc)−Gσc ∗u(x,y)), (8)

where N(x,y) is a small neighborhood of (x,y), H is the Heaviside function and Gσc∗ is a
convolution with a Gaussian. The first part of eq. 8 weights the pixels by their distance to
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the center pixel, while the second part selects pixels that are closer to the observer than the
local area mean of the depth map. This selects the foreground at each contour. The estimated
momentary depth dc then implies the position of the contour, to which we will refer as pc.

Figure 3: Left: a denoised input image; right: contour candidates and their confidences.

We also compute the w-weighted variance of z∗(x,y) at (xc,yc), v(xc,yc), and from it
the total confidence cc as |∇u|(1− exp(−w2

t /σw))exp(−v2/σv). This excludes candidates
that are either insufficiently supported by evidence (wt is small) or contradicting too much
evidence (v is large).

For every contour candidate, we finally determine the surface normal at that point. We
define the image space line l as (∇u(xc,yc)

T ,−(xc,yc)∇u(xc,yc)) that expresses the position
and direction of the contour. It is equivalent to a plane in space π = lPi. The normal of that
plane is our surface normal, nc.

3.4 Local Quadrics
The next operation takes place in a discretized 3D volume. There, we aim to estimate local
quadrics from the contour candidates of all images. An arbitrary quadric can be written as
the level set f (x) = xTCx = 0, where x = (x1,x2,x3,1)T is a homogeneous position vector
and C is a real, symmetrical 4×4 matrix that holds the coefficients of the quadric.

We are now looking for a matrix-valued field C(x,y,z) that varies smoothly across space,
and that corresponds to quadrics that are consistent with the detected contour candidates.
To that end, we look at points in space on a discrete grid, and for every such point pG, we
estimate a quadric C, relying on information provided by nearby edge candidates.

We have found that much more reliable results can be obtained by estimating the gradient
of f (x) first, and then the integration constant. Estimation of the full quadric at once can
lead to unwanted folding-over effects if the contours are misaligned. The gradient of f (x) is
parallel to the surface normal of the quadric and it is given by ∇ f (x) = 2C3x. C3 refers to
the first three rows of C.

To estimate the gradient of the quadric, we minimize the following expression over the
contours in a neighborhood N of grid point pG,

∑
pc∈N(pG)

wc(2C3

(
pc
1

)
−nc)

2, wc = cc exp(− 1
σ2

q
|pc− pG|2) (9)

This yields the gradient of a quadric that conforms to the contour normals nc at the locations
of the contours pc, weighted by their confidence cc and their distance to pG. This computa-
tion is performed in closed form. We also remember the sum of all contour weights wc, to
which we will refer as wq, the weight of the quadric.
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Since C is symmetrical, we are now only missing one last coefficient, c4,4. We compute it
as the median of −pT

c C0 pc over all contours pc in N(pG); C0 is equal to C with its unknown
last coefficient set to zero. We will refer to the quadric estimated at grid point pG as CG.

3.5 Watertight Surface
Finally, we estimate a watertight surface that conforms to the quadrics in the areas surround-
ing the detected contours and to the dense depth maps elsewhere. This is done by solving
a Poisson problem using specific regional terms. We find an optimal 3D scalar field f in
volume V by minimizing∫

V
µqcq(x)( f (x)−q(x))2 +µφ cφ (x)( f (x)−φ(x))2 +µr|∇ f (x)|2dx, (10)

where q(x) and φ(x) are the quadric and the flat regional terms, cq(x) and cφ (x) are their
confidences, and µq and µφ are the respective weights, while µr controls the amount of
regularization.

The quadric regional term q(x) and its confidence cq(x) are computed using the following
quadric voting scheme,

ψ(x) = ∑
pG∈N(x)

wq exp(− 1
σ2

q
|x− pG|2)sign(xTCGx), (11)

q(x) = sign(ψ(x)), cq(x) = |ψ(x)|. (12)

This can be understood as follows. For every point x, every surrounding grid point pG casts a
vote on whether x belongs inside or outside the quadric CG. Those votes are weighted based
on the distance between x and pG and proportionally to the weight of the quadric, wq.

The flat regional term φ(x) is computed from the dense depth maps u(x,y) and the con-
fidence maps κ(x,y). For every depth map, we compute a flatness term h(x,y) from the
contour confidence cc as h(x,y) = exp(−(Gσh ∗ cc)

2(x,y)/η2
h ), where the threshold ηh is set

very low. This term selects from the depth maps those areas that are sufficiently far away
from any detected contours.

For every 3D point x and image i, let θi(x) be the depth difference between x and the
depth map, with a positive sign if x is located behind the surface. We define the flat regional
term and its confidence as follows,

χ(x) = ∑
i

{
γh(Pi(x))κ(Pi(x))exp(−θi(x)2/τ2), if θi(x)> 0
h(Pi(x))κ(Pi(x))(1− exp(−θi(x)2/ρ2)), otherwise

(13)

φ(x) = sign(χ(x)), cφ (x) = |χ(x)|. (14)

If x is located behind the depth map, then we assume it to be inside the material with a
certainty that decays as the distance increases. If x is located in front of the depth map, then
the certainty of being outside increases with the distance. The parameter τ describes the
expected thickness of the material, while ρ describes the uncertainty of the depth map. The
parameter γ is intended to increase the weight of the inside region to counter the minimal
surface bias introduced by unreliable depth maps. In our experiments, γ was set to 10.

Given those regional terms, we compute the optimal f using the Jacobi method. Finally,
we extract a watertight mesh from f by applying the marching cubes algorithm [12].
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Figure 4: Reconstruction of a cat flea (ctenocephalides felis) from 1400 scanning electron
microscope images over an angle of 70◦. Top, from left to right: one of the input images; two
views of the full reconstruction. Bottom: enlarged area of the input image; a reconstruction
obtained through our full quadric based method; a reconstruction based only on our depth
maps.

4 Experiments

We have applied our method to a set of 1400 grayscale images of a cat flea (ctenocephalides
felis) captured by a scanning electron microscope using secondary electron imaging. In
such images, the pseudo-illumination is always static with respect to the viewer. During the
sequence, the camera moves along a 70◦ arc, so the images are spaced roughly 0.05◦ apart,
and the movement is very jittery. The standard deviation of the image noise ranges from
1.1% of the value range for black pixels to 7.3% for white pixels. We have split the sequence
into batches of 50 images with 25 images between two batches.

In addition to our full method, we have also reconstructed a shape using only the flat
regional term φ , for which the flatness term h was set to one everywhere. That way, the
entire shape is reconstructed from the depth maps only. The results of both the full method
and the purely depth map based method are shown in fig. 4.
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5 Conclusion
We have presented a method that is able to reconstruct very complex organic surfaces from
images. The method fits local quadrics to detected internal and external contours, and it can
deal with changing illumination. We have shown that our method is able to reconstruct very
thin features that would be corrupted by a purely depth map based reconstruction.

At the same time, we have observed that our method tends to hallucinate contours in
flat areas that are never seen tangentially. Those false contours are already visible in the
dense depth maps, so we assume that a more advanced form of depth map regularization
might alleviate the problem. More abstractly, it would be necessary to consider the observed
shading patterns as an additional constraint on the allowed amount of surface curvature. This
would form a bridge into the field of shape-from-shading.

Further, we have shown a way to detect and approximate surface features that are as
small as one pixel in size and that are delineated by edges fainter than the noise level of the
image. Although we assume quadrics as our local surface model, other models could also be
fitted to our depth values.
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