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Dendritic spines may be tiny in volume, but are of major importance for neuroscience. They are the main
receivers for excitatory synaptic connections, and their constant changes in number and in shape reflect
the dynamic connectivity of the brain. Two-photon microscopy allows following the fate of individual
spines in brain slice preparations and in live animals. The diffraction-limited and non-isotropic resolution
of this technique, however, makes detection of such tiny structures rather challenging, especially along
the optical axis (z-direction). Here we present a novel spine detection algorithm based on a statistical
dendrite intensity model and a corresponding spine probability model. To quantify the fidelity of spine
detection, we generated correlative datasets: Following two-photon imaging of live pyramidal cell den-
drites, we used serial block-face scanning electron microscopy (SBEM) to reconstruct dendritic ultrastruc-
ture in 3D. Statistical models were trained on synthetic fluorescence images generated from SBEM
datasets via point spread function (PSF) convolution. After the training period, we tested automatic spine
detection on real two-photon datasets and compared the result to ground truth (correlative SBEM data).
The performance of our algorithm allowed tracking changes in spine volume automatically over several
hours. Using a second fluorescent protein targeted to the endoplasmic reticulum, we could analyze the
motion of this organelle inside individual spines. Furthermore, we show that it is possible to distinguish
activated spines from non-stimulated neighbors by detection of fluorescently labeled presynaptic vesicle
clusters. These examples illustrate how automatic segmentation in 5D (x, y, z, t, A) allows us to investigate
brain dynamics at the level of individual synaptic connections.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Imaging live neurons is a powerful technique to investigate the
functionality of the brain. Two-photon microscopy (2PM), which
uses infrared light to locally excite fluorescence, is especially suited
to image fine neuronal structures deeply embedded in intact tis-
sue. To study the dynamics of excitatory synaptic connections
between neurons, dendritic spines are often used as a proxy: the
size of a dendritic spine is correlated with the strength of the syn-
apse impinging on it (Matsuzaki et al., 2001), and the density of
spines on the dendrite is altered in many mental disorders
(Nimchinsky et al., 2002). The tiny volume of dendritic spines is
below the resolution limit of light microscopy and therefore not
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easy to measure or to track over time. While fast scanning systems
and motorized microscopes have made it possible to generate large
amounts of high-resolution fluorescence images in relatively short
time, detailed analysis and quantification of these large datasets
poses a severe bottleneck. Manual analysis, placing regions of
interest (ROI) on individual structures, is time consuming, and
the results may vary with the skill and ability of the human ana-
lyst. In addition, this type of analysis is often done on maximum
intensity projections (MIP), ignoring any information in the axial
(z) direction. Automatic detection, segmentation and evaluation
of dendritic spines in 3D fluorescence datasets would be very valu-
able, especially for the analysis of time series data (4D). In the past,
several approaches for automatic spine detection were presented,
driven mostly by skeleton and backbone reconstruction. In these
approaches, spines are detected as short side branches from the
dendritic backbone (Cheng et al., 2007; Zhang et al., 2007; Janoos
et al., 2009; Yuan et al.,, 2009). Other skeletonizing approaches
detect additionally the tip of spines and use them to segment
spines via grassfire transform or similar (Koh et al., 2002;
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Rodriguez et al., 2007; Xu et al., 2006; Zhou et al., 2008). The per-
formance of all automatic detection programs strongly depends on
resolution and contrast of the input images. As different datasets
were used for benchmarking, reported values for precision and
recall cannot be directly compared between studies.

A related problem, the automatic tracing of axonal and den-
dritic branching patterns, has benefitted from direct performance
comparison in form of an organized competition (DIADEM chal-
lenge; Brown et al., 2011; Gilette et al., 2011). Successful segmen-
tation of dendritic spines, however, was not a criterion in this
competition. From a methodological point of view it is interesting
that one of hardest problems in automatic backbone reconstruc-
tion, the correct merging of separated branches, has recently been
tackled successfully by machine learning (Gala et al., 2014). Learn-
ing of locally invariant features in 3D can also be applied to the
spine detection problem (Fehr, 2009). Objective evaluation of spine
detection performance is difficult. Usually, fluorescence images
annotated by human experts are used as ground truth, and the
quality of automatic detection is then benchmarked against the
manually annotated fluorescence dataset. The resolution of light
microscopes including confocal and two-photon microscopes,
however, is limited by diffraction. Especially in axial direction, fine
spatial features are efficiently filtered out in the process of imag-
ing, and small spines protruding in axial direction are easily missed
by automatic detection and by human experts, too.

Here, we rely on the superior resolution of electron microscopy
to generate ground truth and training datasets in a machine learn-
ing approach to spine detection. Our approach uses knowledge
about the typical shape and size of spines on a particular type of
neuron and knowledge about the spatial resolution of a particular
microscope to detect spines in noisy images. Statistical shape mod-
els have proven to be a powerful and unbiased approach to face
recognition and related problems (e.g. Active Shape Models
(ASM) (Cootes et al., 1995), 3D Morphable Model (Blanz and
Vetter, 1999). To generate statistical models of dendritic spines,
it is essential to use training data in which spines can be identified
and annotated unambiguously. As diffraction-limited light micros-
copy does not provide sufficient spatial resolution, we performed
serial block-face scanning electron microscopy (SBEM, (Denk and
Horstmann, 2004; Briggman and Denk, 2006)) on neurobiotin-
filled neurons of interest (CA1 pyramidal cells). From high-contrast
SBEM data, we generated dendritic surface models. Reconstructed
dendritic volume was convolved with the point-spread-function
(PSF) of our two-photon microscope to generate synthetic fluores-
cence images (SFIs). SFIs were resampled orthogonal to the den-
dritic backbone to generate 2D slices at regular intervals. After a
registration procedure to compensate for the non-isotropic resolu-
tion of SFls, two statistical models were generated by PCA: One of
the characteristic cross-section of a spiny dendrite, and a second
one containing information about the presence or absence of a
spine in that cross-section.

After training of the statistical models, we tested the perfor-
mance of spine detection on data that were not part of the training
set. For this benchmarking procedure, we produced correlative
datasets of spiny dendrites by 2-photon live cell microscopy, sub-
sequent tissue fixation, and SBEM. Using correlative two-photon/
EM data overcomes a fundamental problem of expert-labeled fluo-
rescence data: no expert can detect spines that, after filtering by
the point-spread-function (PSF) of the microscope, leave no recog-
nizable trace in the light microscopy data. The superior resolution
of SBEM data revealed an interesting, non-random orientation of
spines in organotypic culture and allowed to us to benchmark
our detection software in an objective fashion. In addition to the
prediction maps generated by approximation with the statistical
models, we analyzed intensity changes along the backbone to pro-
vide a second criterion for the presence of dendritic spines.

Once we were satisfied with the performance of our program,
we addressed two biologically relevant questions as application
examples. First, we tried to automatically detect spines that were
synaptically connected to fluorescently labeled axons from other
neurons. To evaluate the performance of the automatic analysis,
we compared the results to spine calcium transients triggered by
optogenetic stimulation of the labeled presynaptic axons
(Wiegert and Oertner, 2013). Spines with functional synaptic con-
nections were successfully identified. As a second example, we
analyzed the dynamics of endoplasmic reticulum (ER) which
moves in and out of dendritic spines, potentially altering synaptic
properties (Holbro et al., 2009). As multiple color channels (1) were
acquired over time (t), the analyzed data had 5 dimensions (%, y, z,
t, 2). We detected fast movements of the ER that had escaped
detection in previous studies with lower temporal resolution
(Toresson and Grant, 2005). The prove-of-concept of automated
analysis we present here allows us to scale up our experiments
to large datasets containing thousands of spines, increasing the
statistical power and reproducibility of morphometric studies.

2. Methods

In this section we introduce the concept and methods to suc-
cessfully detect and segment spines. We discuss the conceptual
idea of using statistical models of dendrite intensity and spine
probability, the application to single time points and additional
challenges in the analysis of time series.

2.1. Concept

We use statistical dendrite intensity and spine probability mod-
els for spine prediction and detection. The analysis program was
implemented in C++, using ITK?, VTK®, and QT*. To generate a large
set of training data, we reconstructed stretches of spiny dendrites
from SBEM data and generated synthetic fluorescence images (SFI)
by convolution with the point-spread-function (PSF). In addition,
we computed SFI of spine structures only and resampled both data-
sets by backbone-orthogonal, registered slices (Fig. 1A). Next, we cal-
culated spine probability maps from corresponding orthogonal SFI
slices (Fig. 1B). Principal Component Analysis (PCA) models of den-
drite intensity and of spine probability were computed (Blumer
et al., 2011). These two statistical models incorporate the knowledge
about intensity distributions that signal the presence of a dendritic
spine. They have be generated only once for a specific microscope
and cell type. If fluorescence data from a microscope with a very dif-
ferent PSF need to be analyzed, it is advisable to generate a new set
of training data to calculate appropriate PCA models.

To detect spines in 3D fluorescence images, we also started by
extracting 2D slices orthogonal to the backbone (Fig. 1C). These
orthogonal slices were the basis of the spine prediction. They were
approximated by the dendrite intensity model first; model coeffi-
cients were then transferred to the spine probability model to
reconstruct 2D spine probability maps. Typically, individual spines
contributed fluorescence to several adjacent slices. Therefore, we
introduced additional backbone-parallel features (Section 2.2.3).
These features, which were computed over multiple slices
(Fig. 2), ensured more robust detection results. The 2D prediction
results were then projected back to 3D space and combined with
the backbone-parallel features. Finally, a threshold was applied
to binarize the computed 3D prediction map (Section 2.2.4). The

2 ITK: Insight Segmentation and Registration Toolkit, www.itk.org.
3 VTK: Visualization Toolkit, www.vtk.org.
4 QT: User Interface Framework, www.qt-project.org.
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(A) Data Generation

(B) Model Computation

(C) Spine Prediction and Segmentation
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Fig. 1. Workflow of model computation and spine prediction. (A) Data generation. From SBEM raw data, a volume reconstruction and synthetic fluorescence images (SFI) are
computed. (B) Model computation. From the SFI of dendrites including spines and SFI of spines only, 2D slices are extracted, dendrite/spine intensity maps and spine
probability model computed. (C) Spine prediction and segmentation. From a test image, 2D slices are extracted and a spine prediction is computed, using the probability
models. Combined with additional backbone-parallel features, a 3D spine prediction map is computed and binarized to achieve 3D spine segmentation.

resulting 3D objects correspond to spines or spine candidates for
time series.

In the analysis of time series, we predicted spines indepen-
dently at every time point. To enable analysis of individual spines
over time, rigid registration of the input images was performed.
Following spine prediction, the most probable spine paths were
computed (Section 2.2.5). The resulting spine paths correspond
to the fluorescence intensity of individual spine heads over time,
which, in the case of soluble (cytoplasmic) fluorescent proteins
or dyes, is proportional to their volume.

2.2. Segmentation using dendrite intensity and spine probability model

Here we describe the detection and segmentation of spines
using statistical models. We extend the previously described con-
cept of computing SFIs, dendrite intensity and spine probability
models (Blumer et al, 2011) to account for multiple spine
orientations.

2.2.1. Training of statistical models

The statistical models of dendrite intensity and spine probabil-
ity were based on SBEM data, the generation of which is described
in Section 3.1. We manually traced EM datasets to ensure that also
spines with very thin necks were correctly reconstructed (Fig. S1).
We computed SFIs by convolving the geometrically correct recon-
struction with a Gaussian approximation of the PSF (Fig. 1A) (Zipfel
et al., 2003; Zhang et al., 2010). SFIs were computed for dendrites
including spines and for spines only. Dividing the SFI of spines by
the SFI of the dendrite including spines resulted in 3D maps of
spine probability. From the 3D probability map and the SFI of a
dendrite, we extracted backbone-orthogonal slices. To correct for
the distortion in axial direction introduced by the elongated PSF,
we registered every slice to a circular template (Fig. S2). We calcu-
lated 9 orientation-dependent dendrite intensity and spine proba-
bility PCA models (Fig. 1B). Eight models were computed having
spines into one direction (radial 45° segments) and the last model
(k={1,...,9},K:=9) represented a section without spine (<2.5%
pixels with more than 50% spine probability). The number of radial
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Fig. 2. Concept of backbone-parallel features. (A) Dendrite with backbone (red dashed line) and backbone-parallel profiles (blue lines x4, x, and x3). (B) Dendrite intensity
profile through backbone-parallel profiles x;, x, and x5. (C) Backbone-parallel feature values (schematic) along profiles x1, x5, x3. (D) Visualization of relation between profiles
X1 to x5 and backbone-orthogonal slices s4;. The profile values are sampled from the backbone-orthogonal slices s4; at all pixel positions x and y. The right panel shows the
location of the profiles x;, X, and x5 in the 2D backbone-orthogonal slice sq;. Further slices in a local neighborhood i —1to i +1 are used to compute the backbone-parallel
feature. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

segments was chosen to ensure that a spine occupies mainly one or
two regions. Increasing the number of segments would reduce the
power of each model to contain a complete description of the
spine. With less segments, the risk that the model must be able
to describe multiple spine orientations increases. The nine models
were also used to improve the backbone position. Data X, (spiny
dendrite intensity slices) and X; (spine probability maps) were
divided into X} to X§ and X; to X{. In the matrices X, the examples
are stored vectorized in the columns and the samples are mean-
free (mean of all corresponding samples, representing fluorescence
from the dendritic shaft for the intensity model, subtracted from
each sample). For each orientation and model, the data was decom-
posed by using Singular Value Decomposition (SVD), resulting in
X =UDV" where U and V are the unitary matrices with the Eigen-
vectors of XX" and X™* respectively. D is a diagonal matrix with
the corresponding Eigenvalues from XX and X™ (which are the
same) on its diagonal. We computed from the mean-free data the
models M} to M and M] to M{. These models, which incorporate
knowledge about the typical intensity distribution caused by spine
in an image produced by a particular microscope, are the basis of
our spine detection algorithm. Generation of a new set of models
is only required in two cases: (A) data from a microscope with a
very different PSF has to be analyzed, or (B) study of a type of neu-
ron with spines of very different shape or size.

2.2.2. Backbone optimization

In the current version of our program, we initialize the back-
bone by a list of manually clicked points p; = [x; y; z]" where
x; and y; are specified by the user in a volume rendering viewed
from top. The depth z; is automatically set to the point of maximum
intensity at position x;y;. The points p; are located in sequence
along the dendrite such that a B-spline gives a first approximation
of the backbone. We can specify multiple line parts to approximate
multiple backbone pieces, represented by separate B-splines. Thus,
several regions of interest (stretches of dendrite) can be analyzed
at once. Every B-spline is uniformly sampled at regular intervals
and backbone-orthogonal 2D slices are extracted at the given posi-
tions. The intensity in the slices is normalized and the slices them-

selves are registered to the template used for the model
computation. Dendritic spines can introduce errors (lateral shift)
in the backbone generation procedure. To address this problem,
we extracted additional slices s4;; shifted parallel to the slices sq;
(in the slice plane) at the sampled B-spline positions. Thus, for each
sampled B-spline position, there exists a number of intensity-nor-
malized and registered slices sq;;. For each slice, the probability of
good representation of the slice by a particular dendrite intensity
model can be computed by:

P(sq,Mj) = P(sq|M§)P(M}) (1)

To find the most probable slices sq;; of the shifted slices sg;;
over all sampled B-spline positions, we selected the maxima:

j = argmax{P(sq;j, M)} (2)
j

Over the most probable slices s4;; and their 3D locations, a new
B-spline was approximated. We extracted new seed positions by
taking the location with the highest probability and removed all
neighboring positions within a given radius. Thus, the new B-spline
was defined by the most probable locations, avoiding registration
errors introduced by statistically unlikely slice positions.

2.2.3. Spine prediction

To predict the presence of spines in synthetic or real fluores-
cence images (Fig. 1C), we started by extracting test slices sq;
orthogonal along the dendritic backbone, identical to the training
procedure (Section 2.2.1). Test slices were resisted to a circular
template to correct for distortion (Fig. S2).

A slice sy4; was approximated by the model MZ by

I I

sai ~ Ma(o;) = pg + Ugerg (3)
After extraction of the coefficients ocf;y,- by approximation with

the dendrite intensity model, coefficients were transferred to the

spine probability model to compute the coefficients o,. As intro-

duced in (Blumer et al., 2011) the coefficients are inferred by:

T
o = DgV¢ VEDEO‘ZJ

(4)
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For each test slice, we reconstructed 9 spine probability maps
s!, to s2; using all models. The models M3 and M{ had no spine con-
tribution and the prediction maps of these models were ignored.

A limitation of 2D spine probability maps is the lack of informa-
tion in the third dimension, along the dendritic backbone. To over-
come the independence of the backbone-orthogonal slices and
increase the reliability of spine prediction, we computed back-
bone-parallel features in the slices sq; (Fig 2A). The feature value
indicates intensity changes measured parallel to the backbone. If
a spine is present, intensity along the dendrite show a characteris-
tic peak (Fig. 2B and C). For each pixel in every 2D slice, we com-
puted a feature value in the registered and unregistered 2D slices
sq; and $4; respectively (Fig. 2D). As spines vary greatly in intensity,
we used local gradients rather than absolute values. Depending on
the size and orientation of the spine, it is likely to be sampled in
multiple slices. Therefore, we require a variable distance to calcu-
late the feature. Within a local search region, we used the mini-
mum and normalized it by the intensity of the pixel for which
we computed the feature. For a pixel (x, y) of slice sq4; the feature
is computed by:

bpf (sai(x.y)) = Dt

+ ()

Sdi(X,Y)

Backbone-parallel features bpf(...) were computed in the space
of registered slices s;; and corresponding unregistered slices S,
designated bpf, and bpf,, respectively.

Next, we combined information from the BPFs from registered
and unregistered slices and the spine probability maps in all (eight)
directions to produce cumulative spine prediction maps. For each
pixel the three values were composed together with additional
weights to prediction maps pm:

Py (X,Y) = bpfu(54i(%,¥))bDf(Sai (X, ¥))ski (X, y) 0, 505 (6)

The weights represent how strongly the prediction depends on the
orientation of the slice (w,) and the probability that the slice con-
tains a spine at all (w; and wgk). The weight of orientation of the
slice (w,) corresponds to the reliability of the prediction relative
to the training data. The models are currently not very reliable for
horizontally oriented slices (i.e. vertical dendrites), as they were
trained mainly with horizontally oriented dendritic sections which
are dominant in organotypic slice cultures. The weight is computed
by

®y(5q;) = 1= [(7i,2)] = 1 — || (7)

where 7i; is the normal of the extracted slice and Z the optical axis of
the objective. The weight w; is the probability of having a slice con-
taining a spine. It is computed by:

P(sq;, M%)
Sk 1 P(sas, M)

The last weighting vector wsc depends on the orientation-
dependent model. Therefore, eight versions exist which depend
on the selected model (k). Instead of the original weight, the
weight wsk is a normalized version. We normalized the weight to
the range [0, 1] between local minima and maxima. The non-nor-
malized weight w}, is computed by:

@s(Sqi) = P(Sq; = spine) =1 —

(8)

P(sq;, M%)
P(sq;, M§) + P(sq;, M)

O (Sair k) = 9)

The orientation-dependent prediction maps pm;, are combined
to a final orientation-independent prediction map pm; by applying
a pixel-wise maximum operator:

pmy(x,y) = max{pm;(x.y)} (10)

The application of the pixel-wise maximum operator combines
positive spine prediction results over all model directions. The
combination of multiple features (model prediction and back-
bone-parallel features) and the weights proved to be robust in
practical use. Robust detection and segmentation are essential for
a low rate of false positives, i.e. spurious spines. The introduction
of backbone-parallel features increased precision, especially in
locations where correct registration of the slices was difficult due
to strong curvature of the backbone.

2.2.4. Binarization

At the end of spine detection, we needed a clear yes/no decision.
Therefore, the spine prediction map had to be binarized, which can
be done in a global fashion or locally adaptive. We used a locally
adaptive approach as we had spines with weak and strong detec-
tion results. The locally adaptive approach detected all local max-
ima and computed for each maximum a local thresholding value,
relative to the amplitude of the local maximum. The local thresh-
old was applied inside a search window around the local maxi-
mum. More complex thresholding algorithms (e.g. Otsu
thresholding) can be used, but did not improve the results signifi-
cantly. In our application, we used a relative threshold
t = ¢ max;(pm) where L is the local window and pm the 3D predic-
tion map. In practice, a suitable value was c = 0.7. If seed points are
closely spaced, the search windows can overlap. To separate
spines, all voxels belonging to multiple search windows had to
be assigned to a specific spine. In most cases, a distance criterion
could be used to make this decision: Each voxel was assigned to
the closest local maximum.

2.2.5. Time series analysis

Automated analysis of time series poses additional challenges
for spine detection and segmentation. To compensate potential
translation and rotation induced by drift of the tissue between
time points, 3D registration is required prior to analysis. Manual
backbone initialization for multiple time points is too time-con-
suming. Therefore, we implemented automatic initialization of
the backbone based on the first time point of a series. Finally, each
spine must be identified in each time point to enable automated
tracking of spine changes over time. Tracking of individual spines
is required because spines in live tissue show constant micro-
movements and dynamic changes in neck length.

We used a rigid registration algorithm to compensate for trans-
lation (x, y and z) and rotation (around x-, y-, and z-axis). Each time
point was registered to the first point of the series. In practice, rota-
tion was minimal and limited to the z-axis, as the sample was
placed on the level glass bottom of a recording chamber. We find
for each input images I, with t > 1 the following optimal transfor-
mation M; by:

M; = argmin " (M(I;) - I)? (11)
M- g

where M is the transformation consisting of a translation and rota-
tion and Q is the image domain. The registered input images made
it possible to initialize the backbone only for the first time point.
Furthermore, instead of a complex tracking of spines, a simpler
search of spine paths by path cost was established. From the spines
of the first time point over all other time points and their spines, all
possible paths were computed. To each path, a cost-factor was
assigned, composed of the distance and detection probability.
Finally, repeatedly the cheapest path was selected as spine path
and conflicting ones removed from the set of possible paths. Every
spine path corresponds to the trace of a single spine over time. The
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cost of the spine path was defined as the distance and likelihood of
each spine to its preceding spine and to the first spine of the path:

[ 1IP(Sta) = PSe1g )N 11P(Stq,) = P(S1g)l
c(sl,ql,...,smr)—;{ L(Si,q,)L(S[,l,q:) + L(Si_qr)L(Sl_qlq) }
(12)

where S, is the q.th spine candidate at time point ¢, L(...) is the
likelihood from the 3D prediction map and p(...) is the position of
the spine in 3D. The first summand minimizes the movement from
time point to time point. The second summand restricts the move-
ment away from the first time point. As all images were registered,
there was little movement over time. Taking into account differ-
ences in likelihood prefers well-detected spines over weak ones.

A precisely positioned dendrite backbone proved to be essential
for the detection and prediction of spines using statistical models.
To optimize the backbone starting from the manual initialization,
we also used the statistical models (Section 2.2.2). Combined with
the registration of time series data to the first time point, we were
able to overcome the issue of backbone initialization for each time
point.

3. Results and discussion

In this section, we report the performance of our spine detec-
tion algorithm using correlative datasets and show biological
applications in multi-channel images and time series. Initially,
we used SBEM reconstructions of two sections of spiny dendrites
from two different neurons to train the statistical models. The
resulting model was tested on two independent correlative light/
electron microscopy (CLEM) datasets from two different CA1 pyra-
midal cell branches. To analyze our application examples (Figs. 5
and 6), we generated an improved statistical model based on all
four SBEM datasets (Fig. S1). Automatic detection and segmenta-
tion of spines in single images and time series was possible on
standard hardware. Typical images sizes (512 x 512 x 30 voxels)
were analyzed on current personal computers (e.g. Intel (R) Core
(TM) i7-870 at 2.93 GHz and 16 GB RAM) in about 5 min. Practical
tests demonstrated that time series with 20 time points and image
size of 1024 x 1024 x 170 voxels could be processed on the same
hardware.

3.1. Correlative light/electron microscopy dataset

Previous attempts to detect dendritic spines in fluorescence
images have used manual and automatic analysis of the same data-
set as a benchmark (e.g. (Yuan et al., 2009; Rodriguez et al., 2007;
Zhang et al., 2007)). Due to the diffraction-limited and non-isotro-
pic performance of light microscopes, this approach is quite prob-
lematic: Very thin or stubby spines, or spines leaving the dendrite
in z-direction along the optical axis, might generate a signal that is
not detectable by even the most experienced human observer.
Although this form of benchmarking leads to impressive perfor-
mance figures for the automated detection programs, here we
are interested in another number: What fraction of the complete
set of existing spines can be detected in fluorescence images?

To address this question, we generated correlative light and
electron microscopy (CLEM) datasets, imaging the same spiny den-
drite first live with a two-photon microscope and subsequently
with a serial block-face scanning electron microscope (SBEM). A
similar approach using serial section transmission electron micros-
copy has been used in many in vivo studies to confirm by EM the
presence of synapses on spines observed in the living mouse brain
(Trachtenberg et al., 2002; Holtmaat et al., 2005; Knott et al., 2009).
The two-photon microscope was based on an Olympus BX61-WI
microscope with a 60x 0.9 NA water immersion objective and

two-color detection (Oertner, 2002), controlled by Scanlmage
(Pologruto et al., 2003). The scanning electron microscope (Quanta
200 FEG, FEI) was equipped with an ultra-microtome (3View,
Gatan) in order to cut and image automatically inside the micro-
scope. The segmentation problem posed by the very large SBEM
datasets was solved by photoconversion of neurobiotin, which
made the chosen neuron highly electron-dense and generated
strong contrast to the surrounding tissue. The strong contrast
made it possible to perform a first pass 3D reconstruction using a
simple thresholding operation (Imaris, Bitplane AG). The result of
this automatic segmentation procedure had imperfections, how-
ever, as thin-necked spines were frequently detached from the
dendrite and the dendritic surface contained holes. Therefore, we
resorted to manual tracing of SBEM data to generate the correlative
datasets used in this study (Fig. S1), putting us in the unique situ-
ation to compare the performance of automated spine detection on
fluorescence images to ground truth data from the very same den-
dritic section.

To generate additional training data for the statistical spine
model, we used a number of SBEM reconstructions from neurons
that were not previously imaged live (Fig. S1). These 3D recon-
structions were convolved with the PSF to generate synthetic fluo-
rescence images (SFI). The principle of generating training data and
train the models is introduced in Section 2.2 and (Blumer et al.,
2011). Automatic spine detection was then tested on independent
correlative datasets, starting with SFIs (Fig. 3A). On SFIs, detection
precision was very high (Fig. 3A bottom, no false positives), reflect-
ing the fact that no photon- or background noise was added when
generating these images. Spines protruding downwards, however,
were frequently missed (poor recall) due to strong low-pass filter-
ing along the z-axis of the PSF (Fig. 4A). This illustrates a physical
limitation of traditional diffraction-limited microscopy that can
only be cured by reducing the size of the PSF, e.g. by STED micros-
copy (Ndgerl et al., 2008; Takasaki et al., 2013; Testa et al., 2012). In
the real 2PM images of the same dendritic section, recall was com-
parable, but several false-positive spines were detected in the
background (low precision, Fig. 3B middle). Using slightly higher
excitation laser power, false positives could be completely avoided
(Figs. 5 and 6). Thus, precision depends on the signal-to-noise ratio
of the 2p images as well as the threshold used for binarization of
the spine probability map and is not an inherent problem of our
spine detection strategy. Similar results were obtained on a second
CLEM dataset (Table 1, Fig. S1). For 2PM data, we achieved a preci-
sion and recall of about 0.8, which might seem low compared to
previous publications. However, our result takes into account all
spines that exist, including spines pointing toward the z-direction.
Therefore, the precision and recall figures in this study are not
directly comparable to the benchmark procedure of other studies.

The false positive rate in the analysis of 2PM data was higher
than for SFI data, chiefly for two reasons: First, to generate SFI
images, we used a simple Gaussian approximation of the PSF. In
reality, the PSF is more complex and includes side maxima that fur-
ther degrade the image. Second, dim structures like dendritic
spines suffer from photon shot noise and dark noise of the photo-
multiplier tubes. These noise sources were not simulated when we
generated SFI images. Still, we identified one problem that pro-
duced false positives even in noise-free SFI data: Correct placement
of the dendritic backbone was critical for the spine detection pro-
cess. If the backbone moves toward one side of the dendritic shaft,
for example due to excessive smoothing of a sharp bend in the den-
drite, false positive detections could occur at the outside corner of
the bend. Thus, the second round of backbone optimization based
on the orthogonal slices was important for a reliable result. Detec-
tion precision is less of a concern in time series analysis, because
spurious detections in single time points are efficiently filtered
out in the process of spine registration over time. As automatic
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Fig. 3. Automated spine detection. (A) EM reconstruction of dendrite #6 with its 16 spines (top), synthetic fluorescence image (middle), and segmentation result of SFI data
(bottom, 11 spines detected). (B) Live cell 2-photon microscopy data (top, dendrite #6) and segmentation result (middle). True positives (green), false positives (red) and false
negatives (orange) are labeled on the correlative EM reconstruction (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 4. Orientation of spines in organotypic hippocampal cultures. (A) Automatic spine detection in 2PM fluorescence data tends to miss spines that are hidden below the
dendrite (Dendrite #6, pink: false negatives, gray: true positives) due to the strong filtering properties of the PSF in axial direction. (B) Histogram of spine angles based on
SBEM data, with 0° pointing upwards and 180° pointing downwards (n = 213 spines). (C) Polar plot of spine orientation data (blue, mirrored on the vertical axis), compared to
a perfectly isotropic distribution (green). Spines protruding upwards from the dendrite are very rare in organotypic slice cultures, while lateral spines are overrepresented.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

analysis of time series is of particular interest to us, we optimized
system parameters to perform well for time series and used the
same settings for the analysis of the correlative data. We were sur-
prised about the number of false negatives in the analysis of SFI
data, including some small spines that were correctly detected in
the real two-photon images. The threshold for binarization of spine
probability maps was identical in all analyses. It is possible that
fluorescent dye molecules had accumulated in spines, leading to
a stronger fluorescence signature than expected from the convolu-
tion of spine head volume with the PSF. Further correlative studies
will be needed to investigate the distribution of different dyes in
neurons.

Having confirmed our suspicion that small spines protruding in
z-direction are impossible to detect in real or synthetic fluores-
cence images, we wanted to know the likelihood of such a spine
orientation. Based on our EM data, we could show that spines in
organotypic slice cultures rarely point upwards (Fig. 4B and C).

Thus, the fraction of ‘invisible spines’ in 2p data (false negatives,
19%) is actually lower than would be expected for random spine
orientation, and most missed spines are indeed hidden below the
dendrite (Fig. 4A).

For comparison, we analyzed our 2PM data with NeuronIQ TE
(He et al., 2012). As this software requires higher oversampling
in z-direction, we resampled our original images accordingly. We
tested the parameter domain extensively, but found that default
settings generated the best results. Precision was similar to our
approach for Dendrite #4, but worse for Dendrite #6. Recall was
worse for both datasets (Table 2, Fig. S3A). The commercial soft-
ware IMARIS (Bitplane AG) contains a module for automated trac-
ing of filaments, but had problems distinguishing spines from
dendritic side branches (Fig. S3B). On images with higher contrast,
the performance difference might have been less dramatic. In live
cell imaging, however, high contrast comes at the cost of increased
fluorophore bleaching and photodamage, which are major limiting
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Fig. 5. Automatic detection of synaptically connected spines. (A) Two-photon image (MIP) of live organotypic culture. Axons express a light-activated channel and
fluorescently labeled vesicle clusters (red). Dendrite express the genetically encoded calcium sensor GCaMP3 and CFP. (B) Automatic spine detection based on CFP
fluorescence (volume) of spiny dendrite. (C) Result of automatic two-channel analysis. Spine #5 displays a particularly high value in the red channel, indicating close
proximity to a red fluorescent terminal. (D) Verification of functional synaptic contact by two-photon calcium imaging during optogenetic stimulation. Spine #5, but no other
spine in the analyzed section, displays light-induced calcium transients, indicating the presence of a functional presynaptic terminal. Mean and SEM of 5-10 trials are plotted
for every spine. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

factors in time-lapse studies. The better performance of our
approach on noisy datasets highlights the power of using statistical
models.

Using CLEM data to benchmark spine detection software is a
novel approach, and our results suggest that for any software, pre-
cision and recall strongly depend on spine orientation. We believe
that in contrast to expert labeled fluorescence data, detection of
z-oriented spines can be studied much better if ground truth is
available. Thus, to promote further developments in the field, our
CLEM datasets are available for academic use at http://www.
spinedetection.com.

3.2. Automatic detection of synaptically connected spines

To apply and further test our spine detection software, we used
a dataset where spiny dendrites and active presynaptic terminals
from different neurons were labeled with fluorescent proteins of
different color (Fig. 5A). A particular challenge was the automatic
detection of those spines that were in direct contact with a presyn-
aptic terminal. Due to the diffraction-limited spatial resolution of
the two-photon microscope, structures within the radius of the
point-spread-function (0.6 x 0.6 x 1.6 pm) cannot be separated
optically. In this application, we used the blurring caused by the
PSF to our advantage: We reasoned that red fluorescence from an
adjacent presynaptic terminal should be detectable in the voxels
assigned to a (green fluorescent) dendritic spine. First, we
automatically detected and segmented all spines on a stretch of
dendrite using the volume channel (Fig. 5B). For each spine, we

plotted postsynaptic green fluorescence (spine volume) versus pre-
synaptic red fluorescence (Fig. 5C). In the example presented here,
spine #5 is the only spine that exceeds an arbitrary threshold of 2
fluorescence units in the red channel. Therefore, it is potentially in
functional contact with a labeled presynaptic terminal.

As we had co-expressed a light-gated channel in the presynap-
tic axon and calcium-sensing fluorescent protein (GCaMP3) in the
postsynaptic cell, we could compare the result of our automated
proximity detection to the results of functional imaging. Indeed,
short pulses of blue light induced calcium signals in spine #5,
but not in any other spine on this stretch of dendrite (Fig. 5D), indi-
cating that this and only this spine received glutamate from a light-
activated axon. For a more detailed description of these optogenet-
ic experiments, please see (Wiegert and Oertner, 2013). Simulta-
neous analysis of multiple color channels opens a wide range of
applications, including ratiometric measurements of protein con-
centration in individual spines (Zhang et al., 2008). Here we show
that automated analysis of pre- and postsynaptic labels is possible,
allowing us to successfully identify spines that receive synaptic
input from a defined subset of axons.

3.3. Automated analysis of organelle motility in time series

Live cell imaging is a powerful technique as it allows following
biological processes over time. Good temporal resolution is partic-
ularly important to understand the highly dynamic processes that
shape the brain. Quantitative analysis of time series, however, is
notoriously difficult, as living biological tissue is never quite as sta-
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Fig. 6. Automated detection of endoplasmic reticulum (ER) invading dendritic spines. (A) Automated spine tracking over time. Stars indicate the automatically detected
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up) and spine #6 (pointing down) over all 18 time points (MIPs). Overlay of red and green channels results in yellow ER signal. In frames 4, 8 and 16, ER invasion into spine #5
is evident, while spine #6 is never invaded. (D) Schematic representation of a time-lapse experiment over 300 min, sampling dendritic morphology every 10 min. Spines were
detected automatically. Red squares represent spines without ER, yellow squares spines containing ER (n = 60 spines, 1 dendrite). (E) Dwell times of ER in spines are highly
variable. Most visits last < 10 min, but the distribution has a long tail towards very long residence times (>5 h). Within 5 h, 88% of spines were visited by ER at least once. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ble as fixed preparations. Manual analysis of such datasets is extre-
mely time consuming and often the limiting factor in terms of
throughput and temporal resolution. Here we present an example
of automatic analysis of individual spines in 5D (3 spatial dimen-
sions, 2 colors, and time) to track the dynamics of an intracellular
organelle, the endoplasmic reticulum (ER).

The ER forms a dynamic network inside every neuron (Toresson
and Grant, 2005). Spines containing ER tend to have strong syn-

apses and are preferential sites for a particular type of synaptic
plasticity, mGluR-dependent long-term depression (Holbro et al.,
2009). How long ER typically resides in individual spines is poorly
understood. The goal of this project was the automatic detection of
ER as it invades individual dendritic spines and an analysis of its
temporal dynamics. Individual neurons were co-transfected with
ER-targeted GFP and cytoplasmic dsRed to visualize the entire vol-
ume of the cell (Holbro et al., 2009). Image stacks were taken every
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Quantitative results of automatic spine detection on two CLEM datasets. TP, true positives; FP, false positives; FN, false negatives. Precision is the fraction of detected spines that

are relevant. Recall is the probability that an existing spine will be detected.

Data source Dataset # Spines TP FP FN Precision Recall

Synthetic fluorescence images based on SB-EM Dendrite #4 15 10 3 5 0.77 0.67
Dendrite #6 16 11 0 5 1.00 0.69
Cumulative 31 21 3 10 0.88 0.68

Two-photon microscopy of live neuron Dendrite #4 15 13 3 2 0.81 0.87
Dendrite #6 16 12 4 4 0.75 0.75
Cumulative 31 25 7 6 0.78 0.81

Table 2
Quantitative results of automatic spine detection on 2PM data using NeuronIQ 2.0.
The results can be compared to the 2PM data of Table 1.

Software Dataset # Spines TP FP FN Precision Recall

NeuronlQ 2.0 Dendrite #4 15 10 3 5 077 0.67
Dendrite #6 16 7 6 9 054 0.44
Cumulative 31 17 9 14 0.65 0.55

10 min at a resolution of 0.063 pm/pixel in xy and 0.3 pm/pixel in
z-direction. Lateral drift (2-5 pwm/h, typically) was compensated by
refocussing and by post hoc 3D alignment (Section 2.2.5). We
started by automatic detection and segmentation of spine candi-
dates in each time point, using the red volume signal (Fig. 6A). In
the tree of all spine candidates, the most probable path over all
time points was determined. Each path corresponds to a spine
and the path nodes to the different time points of the correspond-
ing spine. In the example, 10 spines were successfully detected,
segmented and tracked over all time points (precision 1.0; recall
1.0). For each spine, all voxels were sorted by intensity and the
brightest 5% were averaged in both color channels (Fig. 6B, two
examples). Spine #5 showed significant increase of green fluores-
cence at time points 4, 8 and 16, indicating transient invasions of
ER. A correlation between ER invasion and spine volume was not
obvious in this example. Spine #6 was apparently never invaded
by ER, as no green fluorescence maxima were detected over time.
Inspection of the input images (Fig. 6C) corroborated the result
of the automatic analysis. This application example demonstrates
that it is feasible to detect, segment and track the volume of spines
over time and to monitor the presence or absence of intracellular
organelles in an automated fashion. Even this single experiment
contains 180 regions of interest that have different shapes and
sizes; manual analysis would have been tedious. At a lower tempo-
ral sampling rate, more suitable for manual analysis, the brief vis-
itations of ER into individual spines could have easily escaped
detection. Applying automatic detection to longer stretches of den-
drite allowed us to analyze dwell times of ER in spines, which were
highly variable (Fig. 6D). Most visits lasted less than 10 min, but
some spines were permanently occupied by ER (Fig. GE). Within
5 h, 88% of spines were visited by ER at least once, a surprisingly
high number. As calcium release from the ER is thought to be
important for several forms of synaptic plasticity (Jedlicka et al.,
2008), it will be interesting to compare the volume of spines
before, during, and after ER invasion. Picking up subtle changes
in spine volume in a highly variable population requires analysis
of a large number of individual spines across multiple time points.
As this example shows, reliable spine detection and tracking over
time are necessary ingredients to extract biologically relevant
information from images of neuronal structure.

4. Conclusion

We present a machine leaning approach to automatically seg-
ment dendritic spines in two-photon microscopy data and to trace

their fate over time. Our spine detection algorithm is based on the
computation of statistical dendrite intensity and spine probability
models. To generate a large amount of training data for the algo-
rithm, we introduced a new method for the generation of synthetic
fluorescence images (SFI) based on automated SBEM reconstruc-
tions of dendritic geometry. In the training process, we require
no manual classification of spines in the fluorescence domain,
which is error-prone due to poor z-resolution. Instead, spines were
annotated in surface models of EM reconstructions, a process that
requires no special expertise due to the excellent spatial resolution
of SBEM. To test the performance of our spine detection software,
we generated correlative two-photon/EM datasets. Automatic
spine analysis of two-photon data was compared to ultrastructural
information about the presence or absence of spines. As expected,
spines oriented along the optical axis of the microscope were not
detectable in fluorescence datasets. On the bright side, we report
that these spines are underrepresented in organotypic slice cul-
tures. Our results suggest that about 20% of spines will be missed
in the analysis (manual or automatic) of horizontally oriented den-
drites in diffraction-limited 2PM datasets.

Our introduction of statistical models for spine detection had
two major consequences: First, no human expert was needed to
label putative spines in fluorescence datasets. Second, spines of
typical size and shape (i.e. spines that were frequent in the training
dataset) were detected best. Thus, the program had an inherent
bias against detection of non-spines (e.g. filopodia, dendritic side
branches, and fluorescent debris). In the current version of our
software, manual initialization of the backbone allows the user to
control which dendritic section should be analyzed. This was a use-
ful feature for our application, but it prevented fully automatic
analysis and batch processing. Sophisticated algorithms for auto-
matic backbone reconstruction of neurons in fluorescence images
have been developed (Gonzalez et al., 2009; Wang et al., 2011;
Chothani et al., 2011), and the Diadem challenge provides a useful
benchmarking procedure for this computational problem. Similar
to the processing of time series, it would be feasible to initialize
our spine detection software with the result of a dendrite tracing
algorithm. In future extensions, integration of a dendrite tracing
algorithm to initialize spine detection could be a powerful strategy
to analyze all spines on a neuron.

In the second part of our study, we applied our spine detection
program to address two biological problems: First, we performed
automatic detection of spines that are in functional contact with
labeled presynaptic terminals. Second, we tracked the presence
or absence of intracellular organelles in individual dendritic spines
over multiple time points. As our software proved to be useful in
these applications, it allows us to scale up our experiments from
the proof-of-concept level shown here to a scale that is limited
by the speed of data acquisition, not data analysis.

With the advent of high-throughput imaging techniques such
as spinning disc microscopy, SPIM etc., analysis of vast amounts
of data has become a severe bottleneck, limiting the statistical
power of many studies today. We are convinced that automatic
segmentation and analysis of dendritic spines will open new
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possibilities for neurobiological studies, simplifying e.g. the analy-
sis of animal models of human mental disorders. Manual analysis
is not only tedious, but also hard to compare between laboratories.
The greater statistical power that comes with automated image
analysis will make it possible to detect subtle changes in brain
microanatomy that might have escaped previous studies.
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