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Abstract. We present a method to automatically reposition the frag-
ments of a broken bone based on surface meshes segmented from CT
scans. The result of this virtual fracture reduction is intended to be used
as an operation plan for a medical procedure. Particularly in minimally
invasive surgery like intramedullary nailing, the correct repositioning of
bone fragments is not always apparent or visible without an operation
plan. We propose to achieve automatic fracture reduction by fitting the
bone fragments to an intact reference bone mesh with a modified Iterative
Closest Point (ICP) algorithm. A suitable reference could be the same
patient’s contra-lateral bone. In the absence of a CT scan of this bone,
we propose to use a statistical shape model as a reference. The shape
model is automatically adapted to match the anatomy of the broken
bone, apart from the bone’s length, which has to be correctly initialized.
Our experiments show that we can limit the rotational alignment error
to below 5 degrees, compared to 15 degrees in current medical practice.

1 Introduction

Fracture reduction, i.e. the task of repositioning the fragments of a broken bone
into their original position is a common task in everyday medical practice. For
many fractures, the correct repositioning is apparent and straight-forward to
carry out in practice. For some fractures however, an accurate reduction is dif-
ficult to achieve, because the desired position of the fragments is difficult to
deduce from the available medical images. The most widely researched fracture
in this area, which has become somewhat of a model problem, is the femoral
shaft fracture. Figure 1 shows an example, along with its minimally invasive
treatment by intramedullary nailing. In this procedure, a long nail is inserted
into the bone via a small incision at the hip or knee. The fracture site is not
directly visible, and the surgeon has to rely on radiographs to align the frag-
ments. This allows a fairly accurate repositioning in the image planes of the
radiographs. The rotational alignment around the longitudinal axis of the bone
poses a much greater challenge, as it cannot be observed in these radiographs. A
recent retrospective clinical study has found a rotational malalignment of over
15 degrees in 28% of patients [5]. In our experiments we were able to limit the
malalignment to 5 degrees. While we focus on this model problem in this paper,
our method has the advantage that it can be applied to virtually any bone and
fracture.
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Fig. 1. A broken femur (left) treated with an intramedullary nail (right). Even in views
from two perspectives, it is hard to judge the rotational alignment of the fragments.

1.1 Reduction Method

In our reduction method, the fragments of the broken bone are represented as
surface meshes generated from segmented CT scans. The main idea is to align
the main and functionally important fragments to an intact reference bone. This
ensures an anatomically correct repositioning of the main fragments, independent
of the geometry of the fracture surfaces and possible small additional fragments.
Figure 2 shows an example of our proposed reduction method. The repositioning
of the smaller fragments seen in Figure 2(d) will be postponed until Section 2.4.

In order to apply our method we need a mesh representation of a reference
bone that is as similar to the broken bone as possible. If a CT scan of the broken
bone from before the fracture, or a scan of the contra-lateral bone are available,
these can be used to generate a reference mesh. In many cases however, such
scans will not be available and for these we propose to use a statistical shape
model [2] as reference. The mesh of the statistical shape model is automatically
adapted to the characteristics of the fragments during the reduction in order to
reflect the shape of the specific broken bone as accurately as possible. We per-
formed experiments on real and simulated fractures. They show the importance
of correctly adapting the shape model. We achieve to limit the rotational align-
ment error to 5 degrees when using a statistical shape model and to 0 degrees
when using the ground truth bone as reference.

Prior Work. A few groups have worked on automatic bone fracture reduction.
In [7], Moghari and Abolmaesumi align fragments of the proximal femur to the
mean of a statistical shape model built from only 5 bones. However, they do not
adapt the shape model to the individual anatomy of the broken bone. In [4], Gong
et al. perform a reduction of distal radius fractures that uses a 3D statistical
shape model to help align the fragments in calibrated 2D x-ray images. In [9]
Westphal, Winkelbach et al. address femoral shaft fractures in terms of a “3D
puzzle problem”. The individual fragments are aligned based on the fracture
surfaces, i.e. the surfaces of the fracture site which should be rejoined by the
fracture reduction. We argue however that such a method may depend heavily
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Fig. 2. Our proposed reduction algorithm. Instead of directly trying to puzzle the
fragments of a broken bone (a) together, we align the main fragments to a reference
bone (b), ensuring their functionally correct placement (c). If desired, the remaining
fragments can later be fitted to the remaining parts of the reference (d).

on the accurate scanning, segmentation, and alignment of these fracture surfaces.
A very small error in any of these steps, a shattering or compression of the bone
structure could cause a large malalignment at the functionally important ends
of the bones.

Any reduction plan, will have to be used in conjunction with a navigation or
robot system to provide the surgeon with visual and/or haptic feedback about
the current and desired position of the fragments. For such systems, we refer to
[9] and references therein.

2 The Reduction Algorithm

Our method consists of two steps: 1. A rigid alignment of the fragments to the
reference (Section 2.1). 2. The adaption of the statistical shape model to the
given bone fragments’ individual anatomy (Section 2.2). The adaption is only
possible if the fragments are already aligned to the model. The rigid alignment
in turn depends on a good model adaption. We propose to solve these two steps
simultaneously in an iteration scheme, alternating step 1 and 2. If the ground
truth or contra-lateral bone is used as reference, step 2 is omitted.

2.1 Rigid Alignment

For the rigid alignment of each of the fragments, we use the well known Iterative
Closest Point (ICP) mesh alignment algorithm as implemented in VTK [1]. For
each “source point”, i.e. a point on the fragment, the ICP algorithm identifies
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a “target point”, which is the closest points on the reference bone. Then, it
computes the unique rigid transformation that minimizes the distance between
the source and target points. This method is only guaranteed to give a correct
alignment if the source and target points are corresponding points, which is in
general not the case initially. But if the method is reasonably initialized, i.e. the
shapes are roughly pre-aligned, and is iterated several times, the ICP algorithm
has shown to provide a fast and accurate alignment of the shapes.

2.2 Model Mesh Adaption

If a statistical shape model is used as the reference bone, we adapt its shape to
agree as well as possible with the fractured bone. After the rigid alignment, the
individual fragments are already approximately aligned with the current model
instance. Therefore, we can assume that source-target point pairs from the last
ICP iteration, are not only pairs of closest points but also pairs of corresponding
points, at least approximately. With a set of aligned and corresponding points,
it is straight-forward to adapt the model shape to the fragments:

A (linear) statistical shape model represents instances of an object class (e.g.
the human femur bone), as a sum T(α) = μ + Uα of a mean mesh μ and a
linear combination of shape deformations, expressed as the product of a model
matrix U and coefficients α. For more information see [2,6].

Now let us denote the source points on fragment i as Si, and the corresponding
target points on the reference model as Ti. Being points of a model instance,
the latter can be represented as Ti(α) = μi + Uiα, where μi and Ui are the
appropriate sub-vector and sub-matrix of μ and U. Then, to adapt the model
mesh, we wish to find a set of shape model coefficients α such that the mean
square difference between all point pairs given by (Si,Ti(α)) is minimized:

α = argmin
α

∑

i

‖Ti(α)− Si‖2 = argmin
α

∑

i

‖μi +Uiα− Si‖2. (1)

By ‖·‖2 we denote the sum of squared distance norm for point sets, i.e. ‖P‖2 :=∑
p∈P‖p‖22 for P ⊂ IR3. Equation (1) is a convex optimization problem which

admits a unique minimum α. It can furthermore be regularized in order to permit
only parameters α that represent plausible instances from the shape model. [2,6]

The model adaption depends on the accuracy of finding corresponding points
by the rigid alignment and vice versa. Iterating both steps alternatively improves
them in turn and is repeated until a given number of iterations or a convergence
criterion is attained.

2.3 Initialization

As most iterative algorithms, our reduction method relies on a reasonable initial-
ization. Regarding the rigid alignment, our experiments have shown that it suf-
fices to place the reference and the fractured bone roughly in the same area and
orientation. This amounts to placing the reference in the center of the CT scan.
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(a) too short (b) too long (c) correct (d) complex fracture

Fig. 3. Difficulty in bone length estimation. The main fragments can be fitted equally
well to a reference model with incorrect length (a) (b), because bone length and shape
are relatively independent. Only with the middle fragment do we realize the correct
length (c). This seems less feasible in a complex fracture like (d).

Regarding the shape adaption, the experiments have shown that for long bones
it suffices to start the algorithm with the shape model’s mean bone, with one im-
portant exception: The length of the bone should be initialized as accurately as
possible.

The main principle of our algorithm is that only a correctly adapted shape
will minimize the model adaption, which in turn causes a correct alignment.
However, Figure 3 illustrates how this can fail if the length is not correctly
initialized. In long bones like femur, tibia, humerus, etc., the length of the shaft
is relatively independent of the shape and size of the joint regions. Therefore, the
joint regions do not carry enough information for determining the length during
model adaption. The shaft is rather featureless and can be fitted equally well to
bones of almost any length.

We therefore define the length as a mandatory user parameter. It can be esti-
mated by the user/physician for instance by measuring the length of the patient’s
contra-lateral bone or summing up the length of the fragments. Relying on the
length of the individual fragments to determine the bone length automatically
seems unfeasible for complicated fractures like Figure 3(d).

2.4 Implementational Details

We have improved the accuracy of the basic algorithm with a few enhancements.

Finding Closest Points. Both the ICP algorithm and the model adaption
rely on finding closest points as an approximation to corresponding points in the
source and target meshes. Typically, this approximation gets better with each
iteration and in a perfect fit the two meshes and the corresponding points should
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almost coincide with each other. In reality however, the ICP can converge to a
local minimum where the matched closest points are not necessarily correspond-
ing points. This is a well-known shortcoming of the ICP algorithm and has been
discussed in the literature. We use a method proposed by Feldmar and Ayache in
[3] to take the curvature and the normal vectors of the two meshes into account
when searching for closest points, in order to have a higher chance of finding
corresponding points. This is relatively straight-forward to include into the ICP
algorithm [8] by re-implementing the sub-routine that searches for the closest
point on the target mesh for a given source point. Even though this method still
is not guaranteed to find corresponding points, it improves the results signifi-
cantly.

Fitting Remaining Fragments. Finally, as we stated above, our main goal
is to align the main fragments of a broken bone to their anatomically correct
position. We do not aim at solving the “3D puzzle problem” [9], nor do we wish
to rely on the shape of the fracture surfaces for bone alignment. Nevertheless,
it is unsatisfactory to leave small fragments that were left out of the original
fitting unaligned. Therefore, for easy cases, we propose an ad-hoc way to align
the remaining fragments after the main fragments have already been aligned and
the reference model has been adapted to their shape. At this stage, the aligned
fragments and the reference model almost coincide, except in those parts where
the remaining fragments have been left out, see Figure 2(c) for an example.
We can therefore align the remaining fragments to these remaining parts of the
model mesh with an additional ICP alignment. We do not claim that complex
fractures like that in Figure 3(d) can be reduced in this way.

3 Evaluation

Figures 2 and 3 show successful reductions of real femur fractures. Because no
ground truth data is available for these real fractures, we have additionally evalu-
ated our method on artificial fractures. For this purpose, we separated a database
of 145 human femora into a training set of 120 bones, from which we built our
statistical model, and a test set of 25 bones. In order to test the reduction method
on these intact bones, we cut the bone meshes in two parts and randomly dis-
placed these two fragments. Figure 4(a) shows a few of these simulated fractures.
The fracture site, angle, rotation, and translation were drawn from a uniform
distribution on varying intervals. We used an interval of [−100, 100]mm for the
offset of the fracture from the middle of the bone, [−20, 20]� for each component
of the rotation represented by Euler angles, and [−30, 30]mm for the translation.
The algorithm was initialized with the correct bone length.

Ideally, the reduction algorithm should compute the inverse of the random
transforms, putting the fragments back into place. The composition of the
random transforms with the reduction results should be the identity map. By
measuring the deviation from the identity, we can evaluate the accuracy of the
reduction. Figure 4(b), visualizes the results of our experiment. We measured the
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Fig. 4. Evaluation: Box plots of the alignment errors of the reduction algorithm

translation error along and the rotation error around the left-right (x), anterior-
posterior (y) and superior-inferior (z) axis of the bone, in that order. The errors
from the two bone fragments were added to get a measure of the overall reduction
accuracy. The most important plot for our application scenario is therefore the
very rightmost plot. It represents the rotational malalignemnt of the two frag-
ments along the long axis of the bone and corresponds to the value measured
in [5]. We see that, besides one outlier, we have successfully limited the amount
of malrotation to within ±5�, with a mean of 0.44� and a standard deviation of
σ = 3.13�. If these results can be carried through in the operating room, this
will mean a massive improvement over the results reported in [5].

A closer look at the single outlier revealed that it exhibits a bone deformity
known as coxa retrotorta, in which the relative rotation of the distal and proximal
joint area, known as the antetorsion of the femur, is close to 0�. The statistical
shape model on the other hand favors more common bone shapes with normal
antetorsion angles. Extreme cases as this outlier will always have to be individ-
ually evaluated by a medical professional.
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Figure 4(c) reveals that without using the curvature and surface normals in
the fitting, the error is higher (1.54± 6.26�), because the model mesh is not as
well adapted to the individual anatomy. If the original ground truth bone is used
as reference, Figure 4(d), the reduction error is almost zero, (−0.002± 0.03�).

4 Conclusion

We have presented a method for automatic fracture reduction by aligning bone
fragments to an intact reference bone. In the absence of a ground truth or contra-
lateral bone as reference, we use a statistical shape model which is adapted to
the broken bone’s individual anatomy. While automatic bone length estimation
remains a challenge, we have shown visually plausible reductions of real bone
fractures and experimental errors that are far smaller than the current target
error of 15 degrees rotational malalignment in medical practice. Future work will
need to address the implementation of these reduction plans in the operating
room using a navigation system.
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