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Abstract. Fitting statistical models is a widely employed technique for
the segmentation of medical images. While this approach gives impressive
results for simple structures, shape models are often not flexible enough
to accurately represent complex shapes. We present a fitting approach,
which increases the model fitting accuracy without requiring a larger
training data-set. Inspired by a local regression approach known from
statistics, our method fits the full model to a neighborhood around each
point of the domain. This increases the model’s flexibility considerably
without the need to introduce an artificial segmentation of the struc-
ture. By adapting the size of the neighborhood from small to large, we
can smoothly interpolate between localized fits, which accurately map
the data but are more prone to noise, and global fits, which are less
flexible but constrained to valid shapes only. We applied our method
for the segmentation of teeth from 3D cone-beam ct-scans. Our exper-
iments confirm that our method consistently increases the precision of
the segmentation result compared to a standard global fitting approach.

1 Introduction

Statistical shape models have become a commonly used tool in computer vision,
especially for automated segmentation purposes. Oftentimes statistical models
lack the flexibility to accurately represent all valid shapes, as the the number of
training data-sets is insufficient to learn the shape-space. Many approaches have
been proposed to mitigate that problem. These approaches can be grouped into
three categories: The first possibility is to artificially increase the model flexibility
by introducing synthetic variations of the training data at model build time [1–3].
Another option is to relax the model restrictions at fitting time [2, 4–7]. This is
achieved either by finding other features in an image and then to restrict them
with plausible model shapes [2, 6, 7] or by fitting a statistical model which is
subsequently relaxed to match other local information [4, 5]. The problem with
the above approaches is that they allow for deviations that are not explained
by the training shapes. The relaxation of the shape model constraint does not
guarantee anymore that the resulting shape is a likely instance of the model.
Also it is a delicate matter to define artificial deformations that capture exactly
the characteristics of the shape. The third class of methods tries to segment
the model either spatially [8–10] or in the frequency domain [11–13]. While
this increases the flexibility without above mentioned disadvantages, the main
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problem here is how to choose the segments. For natural shapes, neighboring
points always strongly correlate and therefore any spatial segmentation must be
arbitrary. Furthermore no natural decomposition in frequency bands is known.

The method proposed in this paper focuses on fitting a model locally in
the spatial domain and thus increasing its flexibility implicitly. The method is
inspired by local linear regression which is commonly used in statistics [14]. We
fit a complete shape model to a neighborhood around a given point of the image
to segment. The fitting result is used to predict the value at this particular
point only. By repeating this procedure for every point, we finally obtain a fit of
the whole model. The neighborhood size determines how flexible our model is.
In the extreme, considering only a single point allows any arbitrary shape to be
matched. In contrast, having the neighborhood correspond to the full image leads
to the global fit, which strictly adheres to the model constraint. For any local
neighborhood we do adhere to the shape constraint, whereas the global shape
constraint is nevertheless relaxed. We thus have the advantages of a segmented
model without ever actually having to segment the model. Neither do we have to
introduce artificial deformations which are not motivated by the data to increase
the model’s flexibility.

This flexibility comes at the cost of an increased computational overhead.
Performing a full fitting at every point becomes infeasible for large images. To
lessen the computational burden we further present a method to interpolate
between such local fittings, which no longer need to be created for every point
but rather once for a region of definable size.

Our work was motivated by a project in which we aimed to perform model
based segmentation of teeth from 3D Cone Beam CT data. The manual segmen-
tation of such data-sets is tedious and even human experts are not always able to
distinguish the tooth from the surrounding bony structure and to clearly separate
neighboring teeth. With the more wide-spread use of this 3D imaging technology
to plan surgical interventions, the segmentation of teeth becomes a routine task
and automated procedures needs to be employed to be able to perform it effi-
ciently. Due to the difficulty of obtaining good reference segmentations, we did
not have enough data-sets available to build a shape model that represents the
large anatomical variability of these shapes. Our quantitative evaluation, using
a leave-one-out procedure on seven manually segmented data-sets, confirms that
our localized fitting nevertheless yields accurate segmentation and consistently
improves the segmentation accuracy compared to a global fitting approach.

2 Background

2.1 Statistical shape and deformation models

The idea behind statistical models is to learn the normal shape of an anatomical
structure from given example shapes. The resulting model is specific to a given
structure and thus can be used to perform image processing tasks, which would
not be feasible otherwise. In the area of computer vision and medical image anal-
ysis, the main application of statistical models is image segmentation [15]. There
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are several variants of statistical shape models, such as the Active Shape model
[16], the Morphable Model [10] or Statistical Deformation Models [17]. They all
apply Principal Component Analysis (PCA) to a number of example data sets
S1, . . . , Sn to model typical deformations. The examples are assumed to be suit-
ably discretized and in correspondence. This means that for each example Si,
there exists a mapping φi : Ω → Rd from a reference domain Ω = {x1, . . . , xN}
such that φi(x) and φj(x) denote corresponding points of the examples Si and
Sj . It is well known that a PCA model can be written as a generative model of
the form:

M[α] : Ω → Rd x 7→ µ(x) +
∑n
i=1 αiui(x) (1)

where µ : Ω → Rd denotes the sample mean µ(x) := 1
n

∑n
i=1 φi(x) and ui : Ω →

Rd, i = 1, . . . , n are the principal components, computed from the examples
[18]. Note that the model is completely defined by the parameter vectors α =
(α1, . . . , αn). For the case of statistical shape models, the domain Ω is usually
a discretized reference surface, or a parametrization domain. The set of points
{M[α](x) |x ∈ Ω} defines the surface induced by the parameter vector α. In the
case of statistical deformation models, Ω is usually an image domain, andM[α]
defines a deformation field that relates the given reference and target image. To
distinguish between these models, we write MS for shape models, and MD for
the deformation model.

2.2 Statistical model fitting

Statistical model fitting aims at finding the set of parameters of the model (1),
such that it optimally explains a given target structure. We assume in the fol-
lowing that the target structure has already been rigidly aligned with the model,
such that only the non-rigid part of the mapping needs to be found.1 There are
various different methods for shape model fitting (see Heimann et al. [15] for a
recent overview). The most simple case of shape model fitting is to directly fit
a given target surface ΓT ⊂ Rd. Such a surface representation can often be ob-
tained from an image using simple, intensity based segmentation methods. This
rough first segmentation can then be constrained to a valid shape by fitting the
shape model. The problem is formulated as an optimization problem: The goal
is to find a shape, which for each point xi minimizes the distance to the closest
point in the target shape ΓT :

α∗ := arg min
α∈Rn

∑
xi∈Ω

( min
x′∈ΓT

‖x′ −MS [α](xi)‖)2 + λ‖α‖2. (2)

The term λ‖α‖2 serves as a regularization term, which penalizes shapes that
strongly deviate from the modeled mean shape. While this approach is simple, its
main problem is that the cost function (2) includes only boundary information of
the modeled shapes. An approach that includes the complete image information
1 This can be achieved, for example, by performing a Procrustes Alignment [19] on a

number of landmark points defined on the reference and target shape.
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has been proposed by Rückert et al.[17]. The idea is to directly build a statistical
model of the deformation fields MD[α], which relate the image intensities of a
reference image IR : Ω → R, to given examples images. The goal of model
fitting is to find the deformation represented by this model, which best relates
the reference image IR to a new target image IT : Ω → R:

α∗ := arg min
α∈Rn

∑
xi∈Ω

(IR(xi +MD[α](xi))− IT (xi))2 + λ‖α‖2. (3)

Note that (3) establishes point-to-point correspondence between the images. It
can therefore be used to map labels defined on the reference image onto the
target. In particular, given a segmentation of the reference image BR : Ω →
{0, 1}, the warped image BR(x+MD[α∗](x)) yields a segmentation of the target
image. Although the Problems (2) and (3) differ in the way they use the image
information, their solution depends only on the model coefficients α. The strategy
for increasing the fitting accuracy that we are proposing in the next section holds
unchanged for both approaches. For clarity of presentation we will discuss our
method on the simpler case of shape model fitting (Equation 2). For the practical
application that we present in Section 4 we will, however, apply deformation
model fitting (Equation 3).

3 Local shape model fitting

The use of model fitting to obtain a segmentation result, which is restricted to
valid anatomical shapes, is appealing. However the models are often not suffi-
ciently flexible to represent complicated structures accurately. It has been shown
in the literature that spatial segmentation of the model can increase the fitting
accuracy [8–10]. The reason for the improved accuracy is that each segment only
has to represent a local part of the shape, which, by itself, is less complex than
the complete global shape. These segments can therefore be accurately repre-
sented using fewer example shapes. Our approach exploits the same idea, but
instead of partitioning the model we consider local areas of the target structure
to which we fit the full model. Similar to a local regression approach known from
statistics [20], we fit the model to a local neighborhood around each data point
of the target. This strategy avoids completely the problem of having to segment
the model into independent parts.

We illustrate the method for the case of shape model fitting using a 2D
example of hand shapes. Let MS be a statistical shape model and ΓT ⊂ Rd a
target shape. For each point x0 ∈ Ω we fit the entire shape model, but weight
the influence of each point x ∈ Ω on the total cost with a weight wx0 depending
on its distance to the point x0:

α∗x0
:= arg min

α∈Rn

∑
xi∈Ω

wx0(xi)( min
x′∈ΓT

‖x′ −MS [α](xi)‖)2 + λ‖α‖2, (4)
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(a) Global (b) Local fit (c) Interpolated local fit

Fig. 1: A comparison between a global fit (a) and local fitting results (b), (c) for a shape
model which was built from 15 hand shapes. The target hand shape was not part of
the model’s training data. The result shown in (b) has been computed by fitting every
point, whereas in (c) only 20 points were fitted and the remaining ones interpolated.

Although the solution α∗x0
defines a full shape, it is only used to determine the

result Γ ∗ at the point x0:

Γ ∗(x0) :=M[α∗x0
](x0) (5)

The fitting is performed at every point x0 ∈ Ω, and therefore we eventually
obtain a result for the whole shape. Every fit strives to minimize the error around
x0, and thus the resulting shape explains the target better than any global fit
would. As the local neighborhoods of two nearby points greatly overlap, the
resulting fits are similar and the resulting target shape Γ ∗(x0) is nevertheless
smooth. The problem of discontinuous segments, as observed with segmented
models, is completely avoided.

A typical choice for wx0 is the Epanechnikov kernel [14]:

wx0(x) := κσ(x0, x) = D(
dist(x, x0)

σ
) (6)

with

D(t) =
{

3
4 (1− t2) if |t| ≤ 1
0 otherwise. (7)

The weight function κσ is compact and its support determined by σ. For surface
fitting, the distance dist(x, x0) is taken to be the geodesic distance on Ω, as we
wish to match neighboring points on the surface. Figure 1 shows an example of
how our procedure improves the fitting accuracy.

The fitting procedure is only useful if the shape constraints are still enforced
to the degree that artifacts and noise in the data are not fitted. This is determined
by the parameter σ in our kernel (6), which acts as a regularization parameter.
If σ is small the fitting is local and the target shape is accurately represented. In
the extreme case when we fit the model to the point x0 only, the shape statistics
is completely ignored. On the other hand, if σ is large, all points of the shape
have nearly the same influence, and we arrive at the global fitting. The effect
of this parameter is illustrated in Figure 2, where we fitted a hand shape with
a number of manually introduced artifacts. We observe that by increasing σ we
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(a) (b) (c)

Fig. 2: An example of a local fitting on noisy data. (a) shows the hand with manually
introduced artifacts (red line). Fitting only a small neighborhood leads to overfitting
(black line). Increasing the size of the neighborhood eliminates the influence of the
artifacts almost completely .

can reduce the influence of the artifacts, and still accurately represent the actual
target shape.

3.1 Interpolated Local Shape Model Fitting.

Evaluating Equation 4 at every point x ∈ Ω quickly results in an excessive
computational burden for densely sampled shapes. To address this problem, we
perform the fitting only at a subset of the points Ω̃ := {x0, . . . , xK} ⊂ Ω.
Observe that to define the fitting result Γ ∗ at point xk in Equation 5, we used
only the single point M[α∗xk

](xk), even though α∗ defines a full shape

Γ ∗xk
:=M[α∗xk

].

Thus, the idea is to combine these local predictions in a smooth way:

Γ ∗(x) :=
∑K
k=1 ŵk(x)Γ ∗xk

(x)∑K
k=1 ŵk(x)

, x ∈ Ω (8)

where we choose ŵk again to be the Epanechnikov kernel (6). Note that since ŵk
is compactly defined, for (8) to be well defined, the support of the kernel needs
to be chosen such that for each point x ∈ Ω at least one of the weight functions
ŵk(x) is non-zero.

4 Results

In this section we show how our method can be applied for the automatic seg-
mentation of teeth from Cone Beam CT images. Each image has a resolution of
90×71×31 voxels. Figure 3a shows a sample slice through such a tooth ct-image.
The automatic segmentation of such images is a challenging task. Especially at
the roots, the tooth is virtually indistinguishable from the surrounding bony
structure. Furthermore, neighboring teeth can be touching and are thus difficult
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(a) ct-image (b) ground truth (c) global fit (d) local fit

Fig. 3: A typical ct-scan of a tooth is shown in (a) which features typical problems faced
in ct-image segmentation. The image is noisy and a neighboring tooth is touching our
target tooth (red circle). The local fit (d), while robust enough not to leak into the
neighboring tooth at the top, segments the root section better than the global fit (c)
(blue circle), compared to the ground truth (b).

(a) global (b) local (c) global (d) local

Fig. 4: Fitting results (blue) for two sample teeth are compared to ground truth (grey).
Especially at the roots, our local approach (b) and (d) is more precise than the global
one (a) and (c).

to separate. To address these problems, we manually segmented seven data-sets
to create a deformation model, which we subsequently used for segmentation.
We choose one image as the reference, to which we aligned all the images using
Procrustes alignment [19] on eight manually defined landmarks. For solving the
optimization problem, we used a standard LBFGS-B optimizer [21].

The shape of the tooth can vary greatly among individuals, and a model
built from only seven datasets is not sufficient to span this variation. By using
our interpolated local shape model fitting, we get more accurate segmentation
results, as shown in Figure 4. Especially at the roots of the tooth, which exhibit
most variation, the local fitting clearly leads to a large improvement.
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Fig. 5: Comparison of our distance measure (left) to the Euclidean distance (right),
measured from a point at the lower right root. Note the difference of the obtained
distance in the left root as our distance measure is notably higher than the Euclidean
distance in this area.

4.1 Distance Measure

For the shape fitting example discussed in Section 3, we used the geodesic dis-
tance to determine the local neighborhood. This is not possible for the deforma-
tion model, which is defined on the image domain. However, we would still like
to quantify the distance in terms of the shape that we model. We therefore define
the distance between two points that lie within the structure as shortest path
between those points with the constraint that the path always resides within
the structure’s volume. Figure 5 shows a comparison of the Euclidean distance
and our distance function. With the Euclidean distance, the tips of the roots are
rather close to each other, in our distance measure they are far apart.

4.2 Global fit versus Interpolated Local Fit Comparison

We performed a leave-one-out test to asses the fitting quality. We used six man-
ually segmented data sets, similar to the one shown in Figure 3a, for model
building. We then fitted the left-out tooth with the global approach as well as
our interpolated local fitting method. We used 35 equidistant points within the
tooth as our local region defining Γ ∗xk

(Cf. Section 3.1). In all cases the interpo-
lated local fitting method provided better fitting results than the global method.
Table 1 shows the quantitative results of this leave-one-out test. We used the
average Hausdorff Distance to measure the quality of our fittings to the ground
truth. Informally the average Hausdorff Distance tells us how far away, on aver-
age, the other shape is to be expected, if a random point in a shape is chosen.
It measures how well two shapes match each other. More precisely the average
Hausdorff Distance between two volumes S1 and S2 is defined as the total sum
of the shortest path of each point in shape S1 to the closest point in S2 and vice
versa, divided by the total number of points of both shapes.
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Table 1: Measured error based on the ground truth of a global fit and an interpolated
local regression based fit.

Average Hausdorff Distance [pixel]

tooth # 1 2 3 4 5 6 7

global fitting error 0.084 0.089 0.301 0.221 0.203 0.138 0.151

local fitting error 0.071 0.075 0.240 0.143 0.086 0.119 0.113

5 Discussion

We presented an approach for the fitting of statistical models. Our method is
based on the local regression method known from statistics. The core idea is to
fit the model to a local region around a point for each point of the model. In this
way we obtain a fitting result which is solely based on the model information
but still allows for more flexibility than a global fitting method. In contrast to
previous methods, no segmentation of the structure needs to be performed, nor
do artificial deformations need to be included. The size of the neighborhood that
is considered for each fit determines the trade-off between obtaining a fit that
strictly adheres to the global shape constraint, and one that accurately explains
all the data. This parameter should be chosen such that it reflects the noise
properties of the images and the quality of the model.

For large images, fitting a full model at every point is computationally too
expensive. To reduce the computational burden of such an approach, we proposed
a method to interpolate local shape model fits performed only for a subset of
all model points. In this way it becomes feasible to apply the method for the
segmentation of large 3D images. We presented an application of our method
for the segmentation of teeth from Cone Beam CT images. Our tests confirmed
that the local fitting method improves the segmentation results consistently,
compared to the global fitting results.

The number of points we choose for the interpolated fitting determines how
many times we have to perform the fitting. It would therefore be interesting
to choose the points, such they most effectively increase the fitting accuracy.
The exploration of strategies for choosing these point optimally, is an interesting
problem that will be the subject of future work.
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