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Abstract

In this paper we present a novel efficient and fully automated
technique to synthesize realistic facial hair—such as beards
and eyebrows—on 3D head models. The method requires
registered texture images of a target model on which hair
needs to be generated. In a first stage of our two-step ap-
proach a statistical measure for hair density is computed for
each pixel of the texture. In addition, other geometric fea-
tures such as 2D pixel orientations are extracted, which are
subsequently used to generate a 3D model of the individual
hair strands. Missing or incomplete information is estimated
based on statistical models derived from a database of tex-
ture images of over 70 individuals. Using the new approach,
characteristics of the hair extracted from a given head may
be also transferred to another target.

1 Introduction

The modeling of plausible hairstyles is an essential aspect
in the creation of believable virtual characters, as they im-
prove realism considerably. Nevertheless, the large number
of hair strands in combination with their inherent complex-
ity (thin and long structures that interact freely with each
other) make this task one of the most challenging in this
field. Current approaches on hair modeling are based on in-
teractive techniques [Ward et al. 2007; Mihashi et al. 2005]
that require a high grade of expertise of the user, or rely on
information obtained from multiple viewpoints [Paris et al.
2008; Wei et al. 2005]. Although the latter approach is more
automated, it is very time consuming and resource demand-
ing.

On the other hand, techniques for hair detection on images
have already been presented. However, they either rely on
color information [Yacoob and Davis 2006] or combine the
color information with the frequency one in a rather simplis-
tic way [Rousset and Coulon 2008].

In contrast to scalp hair, the appearance of facial hair—
which is important for realism as well—is much more con-
strained and the lengths of the filaments tend to be consid-
erably shorter. Even though their characteristics are quite
different from scalp hair, no other dedicated techniques tak-
ing advantage of such specific properties have been presented
in literature.

As will be shown in this work, plausible facial hair such as
short beards and eyebrows can be generated very efficiently
taking a fully automated approach. Our main contribution
is the implementation of a novel technique that takes as
input a 3D head model (source model S) with its texture
images [Blanz and Vetter 1999; Paysan et al. 2009] and which
generates plausible facial hair strands with minimum user
interaction. In detail, our approach includes the following
key features:
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Figure 1: Workflow of the whole process

• A novel measure estimating the probability of a pixel
to belong to either skin or hair which is inferred from
statistics of the texture image of a source model S. The
new approach works fully automated and is robust with
respect to color tone variations of both skin and hair.

• A method for estimating 2D strand orientation as well
as hair density in texture space.

• A statistical prior based on features of over 70 indi-
viduals that improves the plausibility of results even in
difficult cases with missing or incomplete texture infor-
mation.

• A particle shooting method that eventually generates a
fiber based 3D hair model.

• Using the new approach characteristics of the hair ex-
tracted from a given source S can be transferred to
other head (target model T ).



2 Overview

Our approach has basically two-stages, cf. Figure 1: in the
“feature analysis” step we use image processing techniques to
calculate pixel-wise features on the texture image of S that
help us to estimate the distribution of hair, together with
the corresponding 2D orientation. Furthermore, by applying
the “feature extraction” to a database of many individuals
(which is a pre-processing step), we estimate a statistical
prior representing the a-priory likelihood of hair distribution
embedded in the database. This prior information is used to
improve results of synthesizing facial hair in case of missing
or incomplete source data.

The “geometry synthesis” step involves the conversion of
the 2D features to 3D. This step relies on the fact that the
texture images are registered at the 3D head models. The re-
sulting facial hair geometry is then rendered using the frame-
work proposed in [Zinke and Weber 2007] in order to achieve
photo-realistic results.

3 Feature Analysis

The first and most challenging task of the “Feature Analysis”
step is to identify regions in the texture image of S where
hair is present. This identified region and the 2D texture
orientation (cf. Section 3.3) enable us to characterize the
facial hair of source. Subsequently, as described in section 4,
we synthesize hair on T . This facial hair transfer is possible
because all texture images are assumed to be registered and
thus a fixed one-to-one correspondence between texels of S
and T exists.

For our estimation purposes, we distinguish two regions: a
hair region and a skin region, where every pixel in the image
belongs either to the former or to the latter. Following this

idealized consideration, the probability of a texel t(i,j), p
(i,j)
hair ,

for belonging to hair is estimated. The resulting map is
characterizing the facial hair distribution that we are looking
for.

3.1 A Feature Set for Discriminating Skin and Hair

Purely color-based techniques, widely used in skin detection,
are not accurate in case of shadowing and highlights as such
features tend to have a drastic effect on the tonality of a
texel, cf. [Kakumanu et al. 2007]. Moreover, the coloring of
both hair and skin may be rather similar making a purely
color-based discrimination problematic. To improve the sta-
bility of results not only color but also geometric features
have been used for classification.

Our full feature vector as illustrated in Figure 2 includes the
following components:

• The “strength of orientation” o, response of the orienta-
tion filter along the dominant angle (cf. Equation 10).
Hair regions tend to have a predominant growth direc-
tion.

• The absolute value of the local texture gradient g
helps to discriminate between rather smooth (“low fre-
quency”) skin and less homogeneous (“high frequency”)
hair regions.

• The Luminance L—as the sum of the red, green and
blue color channels—is used to characterize the bright-
ness (as energy) of a texel.

• R − G and R − B represent the difference of the red
channel with the green and with the blue one, respec-
tively. Besides relating green and blue to the strength
of the red component (dominating skin color due to
blood flow in the dermis independent of complexion)
these differences also reduce the effect of specular skin
highlights.

Figure 2: The feature set is computed on a per pixel basis.

3.2 An Iterative Approach for Estimating the Dis-
tribution of Facial Hair

Based on the feature set introduced above the probabilities

p
(i,j)
hair is computed. For that purpose we take a novel fully

automated statistical approach. Assuming that the typical
characteristics of both skin and hair can be sufficiently well
characterized by small exemplary “learning regions” in the
texture of S we iteratively proceed as follows.

First, two square texture blocks—one for skin and another
for hair—are randomly selected. For each of the two regions
we generate a group of histograms, one per feature, using
the information stored on the pixel-wise calculated feature
vectors (see Figure 3). Subsequently a naive Bayesian es-

timator is used to calculate p
(i,j)
hair . In each iteration also a

measure estimating the quality of the classification is com-
puted. Eventually, after a user-defined number of iterations,
the best result with respect to this measure is kept. In the
following, the approach will be discussed in more detail.

3.2.1 Computing p
(i,j)
hair

Let H̃ and S̃ denote selected learning regions for skin and

hair and
∣∣∣H̃∣∣∣ and

∣∣∣S̃∣∣∣ their corresponding cardinalities.

Initially, a first estimate µ
(i,j)
hair (µ

(i,j)
skin ) for the probability of

a texel t(i,j) for belonging to hair (skin) region is computed,
according to our feature set X = {xk}, with k indexed over
the features {L,R−G,R−B, g, o}. These estimators will



be used in a subsequent step to calculate the final probability
values(cf. Equation 6).

Directly dealing with high dimensional feature vectors X(i,j)

is not practical as this would require orders of magnitude
more feature space samples (than provided by the two skin
and hair learning regions) to obtain meaningful statistical
results. For that reason all statistics are first computed in-

dependently for each of its components x
(i,j)
k taking a naive

Bayesian estimation approach and are then combined to fi-

nally obtain the posterior probability p
(i,j)
hair .

Suppressing the (i, j)-dependence and using Bayes formula
the following holds:

µkhair = P (hair | xk = hnk ) =
P (hair ∩ xk = hnk )

P (xk = hnk )
(1)

where hnk is denoting the n-th bin in the corresponding xk-
histogram hk.

Substituting with
∣∣∣H̃∣∣∣ and

∣∣∣S̃∣∣∣ yields

µkhair =

∣∣∣∣H̃(xk=hn
k

)

∣∣∣∣
|H̃∪S̃|∣∣∣∣H̃(xk=hn
k

)∪S̃(xk=hn
k

)

∣∣∣∣
|H̃∪S̃|

(2)

and after eliminating denominators we arrive at

µkhair =

∣∣∣H̃(xk=hn
k
)

∣∣∣∣∣∣H̃(xk=hn
k
) ∪ S̃(xk=hn

k
)

∣∣∣ . (3)

The probability estimates µkskin are then combined by the
following weighted average heuristic taking into account the
spread of the histograms hk:

1

σ2
hair

=
∑
k

1

σ2
k

(4)

µhair =
1

σ2
hair

∑
k

µkhair

σ2
k

. (5)

Here, σk is denoting the normalized standard deviations1 of
the histograms hk.

Although this simplistic approach is optimal for combin-
ing Gaussian probability densities only, it works surprisingly
well in our case.

An expression for µkskin can be derived similarly.

The results of applying (5) µ
(i,j)
hair and µ

(i,j)
skin contain comple-

mentary information about the distribution of facial hair.
Ideally, the two values should sum up to one, for each texel
t(i,j). Considering this property the probability estimates

can be improved further by combining µ
(i,j)
hair and µ

(i,j)
skin ac-

cording to:

p
(i,j)
hair =

√
µ

(i,j)
hair · (1− µ

(i,j)
skin ) (6)

1The standard deviations are normalized by the range of fea-
ture values present in the texture of the source S.

(a) L (b) R−G

(c) R−B (d) g

(e) o

Figure 3: Typical histograms hk for each of the feature set
components xk derived from the selected hair(green) and
skin(blue) regions. Please note their difference in distribu-
tion.

p
(i,j)
skin =

√
µ

(i,j)
skin · (1− µ

(i,j)
hair ). (7)

As will be discussed in the following sections the probabilities

p
(i,j)
hair are used to characterize the distribution of facial hair.

3.2.2 A Quality Measure for Classification

In each iteration k ∈ {1, .., n} of the proposed method hair
and skin learning regions are selected and the probabilities

p
(i,j)
hair are computed. The selection is completely random,

we just ensure that each selected region lies completely over
the texture image. The region with the lowest gradient g
(averaged over all the pixels) is declared as “skin”.To identify
optimal results a simple but efficient heuristic is used.

Assuming that a selection is suitable if a clear classification
(as either hair or skin) is possible, the quality measure mk

is computed as follows:

mk =
∑
i,j

max(p
(i,j)
skin , p

(i,j)
hair ). (8)

The optimum of mbest is given for the iteration (i.e. the pair
of regions) that maximizes the separation of assumed skin
and hair texels:

mbest = max(m1, ..,mn). (9)

For all our tests n = 2048 was used.

3.3 Estimating the 2D Growth Direction of Hair

After the distribution of facial hair has been estimated 2D
texture orientations (Ω) are computed. The basic idea is to



Figure 4: For improving the estimate phair for of facial hairs distribution of a target T in case of missing or incomplete
information as well as for avoiding “false positive” hair texels, a “prior” is used. This prior (rightmost image) is based on a
database of over 70 individuals and statistically combines relevant features present in the datasets. In each texture, the red
and blue blue blocks indicate the best “learning regions” found by our iterative optimization process (see Equation 9)

recreate a 2D vector field over the facial hair region that is
representing the predominant growth direction of hair.

In order to achieve this the “steerable filters” method, as
proposed by Freeman and Adelson [Freeman and Adelson
1991], is used. In this approach a filter is defined by a kernel
K designed to detect an x-aligned orientation. To test an
arbitrary local orientation θ in pixel (i, j), K is rotated by
θ and convolved with the image. Then, the “oriented en-
ergy” of the convolution — which we use to characterize the
strength of orientation — is given by:

E2(θ, i, j) = [Gθ2(i, j)]2 + [Hθ
2 (i, j)]2 (10)

where G2 is the second derivative of a Gaussian and H2 is
its corresponding Hilbert transform.

Dividing the interval [−π/2, π/2) in equally spaced angles
and testing the filter for each of these angles yields a “re-
sponse curve” for each texel t(i,j). The predominant orien-

tation Ω(i,j) is then given by the maximum response and the
inverse of the curve’s variance ω(i,j) as its confidence [Wei
et al. 2005].

In the following phair and Ω will be summarized by a vector
Γ:

Γ =

[
phair

Ω

]
. (11)

3.4 A Statistical Prior for Facial Hair

In case of missing, incomplete or noisy texture estimates of
Γ may be improved by taking into account statistical infor-
mation about the distribution and orientation of facial hair
obtained from many individuals. Assuming that a database
of registered texture images Ik, k ∈ {1, .., n}, is given first
the corresponding Γk distributions are computed which are
then combined to a “prior” Γ̄ by weighted averaging:

Γ̄ =

[
p̄hair

Ω̄

]
(12)

with

p̄hair =
1∑

km
k
best

∑
k

mk
bestp

k
hair (13)

and

Ω̄(i,j) =
1∑

k ω
(i,j)
k

∑
k

ω
(i,j)
k Ω

(i,j)
k . (14)

Please note that the weights for p̄hair — which are con-
stant for all texels of Ik — are given by the optimal quality

measure used for hair/skin classification (see section 3.2.2).
Thus, results pkhair with a clear separation of skin and hair
regions tend to be more effective. In contrast to p̄hair the
weights for Ω̄(i,j) are computed on a local basis. Here, ω(i,j)

locally characterizing the confidence of the 2D orientation
according to section 3.3 is used implying that strongly ori-
ented pixels are most relevant to the prior.

Once the Γ̄ has been generated, it is used to improve the
already estimated distributions Γk in a local fashion. The
goal of improving Γk is to accentuate the separation between
the hair and skin texels while keeping relevant detail of the
originals and completing regions that are not well classified
as either skin or hair. Intuitively, this means that regions
of high uncertainty are enhanced with prior data whereas
texels that have been clearly identified as skin or hair are
nearly preserved. This objective is achieved by applying the
prior as follows:

p0 = min(phair · p̄hair, p̄
2
hair)

p1 = max(phair,
√
phair · p̄hair)

p
′
hair =

{
p0 1− p0 > p1

p1 otherwise
(15)

Using two different expressions p0 and p1 allows for accen-
tuating the difference between skin and hair which is es-
pecially important for avoiding “false positive” hair regions
(see Fig. 5).

To improve the orientation map we follow a different ap-
proach, because the goal is to improve the angle measure-
ment. Therefore, from the estimated angle (Ωk(i, j)) and
the combined one (Ω̄(i, j)), we select the one with the big-
ger confidence value.

4 Hair Synthesis

Once Γ is improved, a 3D hair geometry (a set of N fil-
aments) is generated on the head model. As the texture
images are registered, there is a correspondence between 3D
model coordinates and 2D texture coordinates. This is a key
element in the generation process.

4.1 Distributing Hair Roots

First we calculate the location of the filaments’ roots. For
this purpose a 2D sampler distributes n samples (a user de-
fined parameter specifying the number of filaments to be
synthesized), using the estimated phair as probability den-
sity function (pdf). In a subsequent step these samples are



Figure 5: Improving estimates by applying the prior information (middle image) to the original phair (leftmost image). The
prior allows for a much clearer separation of skin and hair and that all features of the original estimate are also present in the
result of this operation (rightmost image).

then projected from 2D texture space to 3D world space.
For the i-th filament the resulting 3D positions of the hair

roots are denoted ~Pi.

4.2 Generation of Filaments

The hair filaments are generated using a “particle shooting”

approach: a “projectile” is “shot” from the hair root ~Pi,

using an initial orientation ~Oi. The filament is then given

by the projectile’s trajectory. The vector ~Oi is computed as
the 3D projection of the 2D orientation field Ω introduced in

section 3.3. Adding a gentle pseudo gravity force ~fg further
improved results.

To obtain plausible results also filament-filament as well as
filament-head model collisions have been taken into account.
Collisions are detected using a grid based approach [Teschner
et al. 2003]. The filaments are generated starting at the roots
by an iterative synthesis process. In each iteration the fil-
aments are extended according to the particle trajectories.
Collisions are avoided by separating filaments that are in
contact. Collisions get resolved simultaneously for all fila-
ments within a certain predefined neighborhood.

4.2.1 Generation of Eyebrows

Eyebrow filaments are generated differently because they
tend to be more aligned. For that reason no particle shooting
is applied. Instead the 2D orientation field Ω is used directly
as filaments growth direction. Starting at the 2D root loca-
tion in texture space the filaments are tracked through Ω.
The resulting trajectories are then converted to 3D world-
coordinates and are terminated as they reach a predefined
maximum length.

4.3 Rendering

The realistic visualization of the resultant geometry is the
last step of the modeling process. In order to achieve
physically-plausible results the hair shading framework pro-
posed by Zinke and Weber [Zinke and Weber 2007] was used.
It is important to note that believable results are obtained
only if the rendered hair exhibits similar detail as the tex-
tures mapped on the 3D head models. This is obtained by
adapting the filter width used for image reconstruction (as
final part of the rendering pipeline) to the size of projected
texels in image space.

5 Results

A simple example illustrating the different steps of our
pipeline is given in Fig. 6.

Figures 7 and 8 show further applications of our approach: In
Fig. 7 facial hair is characterized from two different sources
(topmost row) and transfered to four targets (leftmost col-
umn). In the second example we aim to generate plausible
beards on (nearly) completely shaved individuals (leftmost
column). Taking advantage of the statistical prior in con-
junction with the texture images we are able to synthesize
believable results (rightmost column) even in such very chal-
lenging cases. The resulting hair distribution is very con-
sistent with original regions which are hardly visible in the
texture images. For comparison purposes also the pure prior
was transfered to the models (middle column).

The most obvious limitation of our approach is that it is
based on the assumption that a mapping between the 2D
texture space and the 3D model space is known. That re-
stricts our input data to registered texture images. Other
limitation is that the textures in the database must be simi-
lar in order to the prior be constructed in a meaningful way.

Feature detection is the most time-consuming step of the
whole process. With an Intel Core 2 Duo CPU (E8500 @
3.16 GHz, using a single core), it takes around 45 seconds to
process one model. This feature detection is required also
for each of the models that are used to build the statistical
prior. However, as the prior is computed only once, and re-
mains unchanged for all subsequent analysis, it’s costs (50
minutes of pre-computation our case) are usually not a lim-
iting factor.

The other time consuming step is the geometry synthesis,
whose runtime depends strongly on the number of filament
to be generated. All of our examples have 11000 filaments
with 10 mm maximal length each. With these parameters
the hair geometry is generated in 25 seconds.

6 Conclusion and Future Work

We have presented a technique that extracts the geometric
information of facial hair out of registered 2D textures and
uses it for different synthesis tasks on (morphable) 3D-head
models (see Figures 7 and 8). As for the existing approach
a very simple heuristic was used to determine the length of
a filament. An interesting topic of future work would be to
infer this length directly using more sophisticated texture
space analysis as well as database statistics. We did not try
to extract “hair color” information from the images. Notice



Figure 6: Stages of the facial hair generation process. Starting with the 3D head model and texture images as input data (first
and second images from left), the facial hair region is estimated using a probability map (middle image), the hair filaments are
generated with their corresponding distributions and orientations (fourth image from left) and finally a photo-realistic image
is rendered (last image)

that “hair color” is a concept that must be defined carefully
on the fiber level, e.g. as the parameters of a BCSDF scatter-
ing model [Zinke and Weber 2007; Zinke et al. 2009]. Zinke
et al. [Zinke et al. 2009] present a practical approach for the
acquisition of hair color (the parameters of the BCSDF of
an average fiber) of scalp hair out of images. This approach
requires that a hair strand is wrapped around a cylinder to
have a well defined hair geometry with “good” properties
for solving the inverse rendering problem. Whereas this ap-
proach is not directly applicable to facial hair, the more reg-
ular geometric properties of facial hair with respect to scalp
hair makes it plausible that this approach can be adapted
to the problem of BCSDF estimation of facial hair fibers.

The ultimate goal of our future work is aimed to extend our
techniques to the development of an approach that allows
the modeling of complete hairstyles using qualitative infor-
mation retrieved from images.
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Figure 7: Beard transfer. Two different sources (topmost row) are used to synthesize beards on four different targets (leftmost
column).



Figure 8: Applying our method to shaved individuals (first column). Results obtained by using exclusively information
from our statistical prior (middle row) and the final results also taking into account the specific characteristics of individuals
according to the full pipeline (rightmost row).


