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Abstract

Generative 3D face models are a powerful tool in
computer vision. They provide pose and illumination
invariance by modeling the space of 3D faces and the
imaging process. The power of these models comes at
the cost of an expensive and tedious construction pro-
cess, which has led the community to focus on more eas-
ily constructed but less powerful models. With this pa-
per we publish a generative 3D shape and texture model,
the Basel Face Model (BFM), and demonstrate its ap-
plication to several face recognition task. We improve
on previous models by offering higher shape and texture
accuracy due to a better scanning device and less cor-
respondence artifacts due to an improved registration
algorithm.

The same 3D face model can be fit to 2D or 3D im-
ages acquired under different situations and with dif-
ferent sensors using an analysis by synthesis method.
The resulting model parameters separate pose, lighting,
imaging and identity parameters, which facilitates in-
variant face recognition across sensors and data sets by
comparing only the identity parameters. We hope that
the availability of this registered face model will spur
research in generative models. Together with the model
we publish a set of detailed recognition and reconstruc-
tion results on standard databases to allow complete
algorithm comparisons.

1. Introduction

Automatic face recognition from a single image is
still difficult for non-frontal views and complex illumi-
nation conditions. To achieve pose and light invari-
ance, 3D information of the object is useful. For this
reason, 3D Morphable Models (3DMM) have been in-
troduced a decade ago [7]. They have become a well
established technology able to perform various tasks,

most important face recognition [8, 18, 11], but also
face image analysis [7] (estimating the 3D shape from
a single photograph), expression transfer between in-
dividuals [6, 17], animation of faces and whole bod-
ies [6, 1], and stimuli generation for psychological ex-
periments [14] to name a few.

A 3DMM consists of a parameterized generative 3D
shape, and a parameterized albedo model together with
an associated probability density on the model coef-
ficients. A set of shape and albedo coefficients de-
scribes a face. Together with projection and illumina-
tion parameters a rendering of the face can be gener-
ated. Given a face image one can also solve the inverse
problem of finding the coefficients which most likely
generated the image. Identification and manipulation
tasks in coefficient space are trivial, because the gen-
erating factors (light, pose, camera, and identity) have
been separated. Solving this inverse problem is termed
“model fitting”, and was introduced for faces in [7] and
subsequently refined in [18]. A similar method has also
been applied to stereo data [3] and 3D scans [2].

However, the widespread use of 3DMMs has been
held back by their difficult construction process, which
requires a precise and fast 3D scanner, the scanning of
several hundreds of individuals and the computation
of dense correspondence between the scans. Numer-
ous face recognition articles acknowledge the fact that
3DMM based face image analysis constitutes the state
of the art, but note that the main obstacle resides in the
complications of their construction (e.g. [22, 13, 12, 5]).
For example, quoting Zhou and Chellappa [23]: “Its
only weakness is the requirement of the 3D models”.
Hence, there is a demand from the face image analysis
community for a publicly available 3D Morphable Face
Model. The aim of this paper is to fill this gap.

We describe a 3D Morphable Face Model - the
Basel Face Model (BFM) - that is publicly available
(http://faces.cs.unibas.ch/). The usage of the
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BFM is free for non-commercial purposes. This model
not only allows development of 3DMM based image
analysis algorithms but will also permit new practices
that were impossible before:

First, the 3DMM allows generalization over a va-
riety of different test data sets. Currently, there ex-
ist several publicly available face image databases (e.g.
CMU-PIE [20], FERET [15], etc.) and databases with
unregistered 3D face scans (e.g. UND [9]). Each of the
image databases provides gigabytes of face photographs
taken at different poses and illumination conditions.
These images are either used to train or test new algo-
rithms. Unfortunately, in most cases (e.g. [23, 10]) the
same face database is used for both training and test-
ing. Such recognition systems usually have difficulties
to generalize from one database to another, because
the imaging conditions are too different.

The 3DMM, however, can generate face images at
any pose and under any illumination. As mentioned
before the face rendering can be used directly in an
analysis by synthesis approach [7], to fit the model to
images. Or it can be used indirectly to generate train-
ing or test images at any imaging condition. Hence, in
addition to being a valuable model for use in face anal-
ysis it can also be viewed as a meta-database which
allows the creation of an infinity of accurately labeled
synthetic training and testing images.

Registered scans of ten individuals, which are not
part of the BFM training set, are provided together
with a fixed test set of 270 renderings with pose and
light variations. Additionally, synthetic faces can be
generated from random model coefficients. This flexi-
bility can also be used to test specific aspects of face im-
age analysis algorithms: For instance, how the depar-
ture from the Lambertian assumptions affects the per-
formance of an algorithm (with or without cast shad-
ows and specular lobe, with a sparse set of lights or an
environment map, etc.). The pose can be varied contin-
uously such that the extent of the pose generalization of
an algorithm can be easily analyzed. For example, test
images for stereo algorithms with variable baseline, or
for photogrammetric stereo with programmable light
directions can also be easily generated. The bottom
line is that it is now possible and easy to test the lim-
itations of face image analysis algorithms in terms of
pose and illumination generalization.

Secondly, the vast majority of face recognition ar-
ticles provide results in terms of percentage of rank-1
correct identification or False Acceptance Rate (FAR)
/ False Rejection Rate (FRR) curves on a standard
database. However, these numbers do not fully de-
scribe the behavior of an algorithm and leave the reader
with open questions such as: Is the algorithm able to
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Figure 1. Correspondence artifacts caused by the surface
parametrization occur especially for larger values of model
coefficients. Rendering the MPI model (right) and the BFM
(left) with the same coefficient vector (ci ∼ N (0, (2.5)2))
shows that the new BFM displays less artifacts.
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Figure 2. The BFM was trained on 200 individuals (100f/
100m). Age (avg 25y) and weight (avg 66kg) are distributed
over a large range, but peak at students age.

reproduce the input images and how accurate is the re-
construction? Do the coefficients of different images of
the same individual cluster nicely in model space? Can
the recognition be improved with a different metric in
model space? These and similar questions can only
be answered if the model coefficients are made public.

Moreover, numerous face image analysis articles de-
scribe algorithms but do not release training data. This
hinders reproducible research and fair comparison with
other algorithms. To address these two restrictions we
provide both the training data set (the BFM) and the
model fitting results for several standard image data
sets (CMU-PIE, FERET and UND) obtained with the
state of the art fitting algorithms [18, 2]. We hope
that researchers developing future algorithms based on
the BFM will likewise provide the coefficients to enable
deeper algorithm comparison and accuracy analysis.

Currently, to the best of our knowledge, there ex-
ist only two comparable 3DMMs of faces: the Max-
Planck-Institut Tübingen (MPI) MM [7] and the Uni-
versity of South Florida (USF) MM [19]. Compared
with these, the BFM is superior in two aspects: Our 3D
scanner (ABW-3D) offers a higher resolution and pre-
cision in shorter scan time than the Cyberware (TM)
scanner (used for the MPI and USF models). This
results in a more accurate model. Secondly, a differ-
ent registration method is used yielding less correspon-
dence artifacts (Fig. 1). Additionally, renderings of
fitting results are more realistic with the new model
(Sec. 3). We now describe the construction of the



Figure 3. Registration establishes a common parametriza-
tion between the original scans (left) and fills in missing
data (right).

model followed by baseline experiments against which
to compare future computer vision algorithms. We de-
scribe results obtained with the BFM in terms of iden-
tification experiments and visual quality of the fittings.

2. Model Construction

The construction of a 3DMM requires a training set
with a large variety in face shapes and appearance. The
training data should be a representative sample of the
target population. The training data set for the BFM
consists of face scans of 100 female and 100 male per-
sons, most of them Europeans. The age of the persons
is between 8 and 62 years with an average of 24.97 years
and the weight is between 40 and 123 kilogram with an
average of 66.48 kilogram (Fig. 2). Each person was
scanned three times with neutral expression, and the
most natural looking scan was selected.

2.1. 3D face scanning

Scanning of human faces is a challenging task. To
capture natural looking faces, the acquisition time is
critical. We use a coded light system with an acquisi-
tion time of ∼ 1s. This leads to more accurate results
compared to laser scanners with a acquisition time of
around ∼ 15s. The structured light system was built
by ABW-3D. It uses a sequence of light patterns which
uniquely encode each pixel of the projectors, such that
triangulation can be performed even on unstructured
regions like the cheeks. To capture the full face the
system uses two projectors and three cameras resulting
in four depths images. The system captures the facial
surface from ear to ear with outstanding precision (Fig.
3, left). The 3D shape of the eyes and hair cannot be
captured with our system, due to their reflection prop-
erties. The resolution of the geometry measurement is
higher than all comparable systems: ABW-3D ∼ 200
k, Cyberware ∼ 75 k and 3Dmd ∼ 20 k.

Simultaneously with each scan, three photos are
taken with SLR cameras (sRGB color profile). Three
studio flashes with diffuser umbrellas are used to
achieve a homogeneous illumination. This ensures a
higher color fidelity compared to other systems.
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Figure 4. Each entry in the data vectors correspond to the
same point on the faces. In this example the first entry
corresponds to the tip of the nose

2.2. Registration

To make the raw data usable it needs to be brought
in correspondence. This means, that the scans are
re-parameterized such that semantically correspond-
ing points (i.e.} the nose tips or eye corners) share
the same position in the parametrization domain (Fig.
4). Registration establishes this correspondence for all
points of the face, including unstructured regions like
the cheek. After bringing the scans into correspondence
linear combinations of scans, are again faces. The ef-
fect of a bad registration on the model quality can be
seen in figure 1. To establish correspondence we use a
modified version of the Optimal Step Nonrigid ICP Al-
gorithm [4]. The registration method is applied in the
3D domain on triangulated meshes. It progressively de-
forms a template towards the measured surface while
ensuring a smooth deformation. In addition to estab-
lishing correspondence this method fills in missing re-
gions by using a robust distance measure. To improve
the model quality we manually added landmarks at the
lips, eyebrows and ears.

2.3. Texture Extraction and Inpainting

The face albedo is represented by one color per ver-
tex, which is calculated from the photographs. The in-
formation from the three photographs is blended based
on the distance from the visibility boundaries and the
orientation of the normal relative to the viewing di-
rection. To improve the albedo model we manually
removed hair and completed the missing data using
diffusion.

2.4. Model

After registration the faces are parameterized as tri-
angular meshes with m = 53490 vertices and shared
topology. The vertices (xj , yj , zj)T ∈ R3 have an asso-
ciated color (rj , gj , bj)T ∈ [0, 1]3. A face is then repre-



sented by two 3m dimensional vectors

s = (x1, y1, z1, . . . xm, ym, zm)T (1)

t = (r1, g1, b1, . . . rm, gm, bm)T .

The BFM assumes independence between shape and
texture, constructing two independent Linear Models
as described in [7]. A Gaussian distributed is fit to
the data using Principle Component Analysis (PCA),
resulting in a parametric face model consisting of

Ms = (µs,σs,Us) andMt = (µt,σt,Ut), (2)

where µ{s,t} ∈ R3m are the mean, σ{s,t} ∈ Rn−1

the standard deviations and U{s,t} = [u1, . . .un] ∈
R3m×n−1 are an orthonormal basis of principle com-
ponents of shape and texture. New faces are generated
from the model as linear combinations of the principal
components

s(α) = µs + Us diag(σs)α (3)
t(β) = µt + Ut diag(σt)β

The coefficients are independent and normally dis-
tributed with unit variance under the assumption of
normally distributed training examples and a correct
mean estimation.

The data necessary to synthesize faces (i.e. the
model data Ms, Mt and the triangulation) together
with test data and test results are available at our web
site. We provide:

� Shape and albedo PCA modelMs,Mt (U,σ,µ) com-
puted from the 200 face scans.

� Ten additional registered 3D face scans together with
2D renderings of the scans with light and pose varia-
tion.

� Vertex indices of MPEG and Farkas points together
with 2D projections within the above renderings.

� Model coefficients obtained by the fitting of FERET
and CMU-PIE together with 2D renderings of the re-
constructed shapes.

� Model coefficients obtained by the fitting of the unreg-
istered 3D shapes of the UND database.

� Mask with four segments (Fig. 5) that is used in the
identification experiments (Sec. 3.1).

� Matlab code for own experiments, e.g. generation of
random faces.

3. Experiments

With the BFM a standard training set for face recog-
nition algorithms is provided to the public. Together
with test sets such as FERET, CMU-PIE and UND,
this allows for a fair, data independent comparison of
face identification algorithms. We demonstrate that it
is not necessary to train a model specifically for each

test database by splitting the database into test and
training set, instead it is possible to apply the same
model to all data sets. With our face identification ex-
periments, we show that the BFM is general enough to
be used with different 2D and 3D sensors.

3.1. Face Identification on 2D images

To demonstrate the quality of the presented model
we compare it with the MPI model by 2D identifica-
tion experiments (CMU-PIE/FERET) [18]. To allow a
detailed and transparent analysis of the results and to
enable other researchers to compare their results with
ours, we provide the reconstructed 3D shapes and tex-
tures, coefficients and rendered faces for each test im-
age. None of the individuals in the test sets is part of
the training data for the Morphable Model. The test
sets cover a large ethnic variety.

Test Set 1: FERET Subset The subset of the
FERET data set [16], consists of 194 individuals across
9 poses at constant lighting condition except the frontal
view taken under a different illumination condition. In
the FERET nomenclature these images correspond to
the series ba through bk. We omitted the images bj as
the subjects present a smile and our model can only
represent neutral expressions.

Test Set 2: CMU-PIE Subset The subset of the
CMU-PIE data set [20], consists of 68 individuals (28
wearing glasses) at 3 poses (frontal, side and profile)
under illumination from 21 different directions and am-
bient light only. To perform the identification we fit the
BFM to the images of the test sets. In the fitting three
error terms based on landmarks, the contour and the
shading are optimized. To extend the flexibility, four
facial regions (eyes, nose, mouth and the rest Fig. 5)
are fitted separately and combined later by blending
them together. The obtained shape and albedo model
parameters for the global fitting α0 and β0 and for
the facial segments α1, . . .α4 and β1, . . .β4 represent
the identity in the model space. These parameters are
stacked together into one identity vector

c =
(
α0, β0, . . . α4, β4

)
. (4)

Similarity of two scans is measured by the angle be-
tween their identity vectors.

Table 1 and 2 list the percentages of correct rank
1 identification obtained on the CMU-PIE and the
FERET subset, respectively. The overall identification
rate with the BFM model is better than the MPI re-
sults. For CMU-PIE 91.3% (vs. 89.4%) and for FERET
95.8% (vs. 92.4%) were obtained. As in previous exper-
iments the best results are obtained for frontal views.



shape shape components texture texture components
mean 1st. (+5σ) 2nd. (+5σ) 3rd. (+5σ) mean 1st. (+5σ) 2nd. (+5σ) 3rd. (+5σ) Mask

1st. (−5σ) 2nd. (−5σ) 3rd. (−5σ) 1st. (−5σ) 2nd. (−5σ) 3rd. (−5σ)

Figure 5. The mean together with the first three principle components of the shape (left) and texture (right) PCA model.
Shown is the mean shape resp. texture plus/minus five standard deviations σ. Mask with the four manually chosen segments
(eyes, nose, mouth and rest) used in the fitting to extend the flexibility.

Gallery / Probe front side profile mean
front 98.9 % 96.1 % 75.7 % 90.2 %
side 96.9 % 99.9 % 87.8 % 94.9 %
profile 79.0 % 89.0 % 98.3 % 88.8 %
mean 91.6 % 95.0 % 87.3 % 91.3 %

Table 1. Rank 1 identification results obtained on a CMU-
PIE subset. The mean identification rate is 91.3%. With
the former MPI model a identification rate of 89.4% was
obtained.

Gallery / Probe Pose Φ Identification rate
bb 38.9 ° 97.4 %
bc 27.4 ° 99.5 %
bd 18.9 ° 100.0 %
be 11.2 ° Gallery
ba 1.1 ° 99.0 %
bf -7.1 ° 99.5 %
bg -16.3 ° 97.9 %
bh -26.5 ° 94.8 %
bi -37.9 ° 83.0 %
bk 0.1 ° 90.7 %
mean 95.8 %

Table 2. Rank 1 identification results obtained on a FERET
subset. The mean identification rate is 95.8%. With the for-
mer MPI model a identification rate of 92.4% was obtained.

Compared with the MPI, the visual quality of the BFM
fitting results (Fig. 6) is much better since the overfit-
ting in the texture reconstruction has been reduced.

Figure 6. Exemplary fitting result for CMU-PIE with BFM
Face Model. Left the original image, middle row the fitting
result rendered into the image and right the resulting 3D
model.

3.2. Face Identification on 3D scans

For the 3D identification experiments, we fit the
BFM to shape data without using the texture. The
fitting algorithm [2] is a variant of the nonrigid ICP
work in [4]. We initialize the fitting by locating the tip
of the nose with the method of [21]. As test set we
use the UND database [9] that consists of 953 unregis-
tered 3D scans, with one to eight scans per subject. As
for the 2D experiments, we measure the similarity be-
tween two faces as the angle between their coefficients
in Mahalanobis space. The recognition performance
for different distance thresholds is shown in Fig. 7.

4. Conclusion

We presented a publicly available 3D Morphable
Model of faces, together with basic experiments. The
model addresses the lack of universal training data for
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Figure 7. Identification results obtained on the UND
database of unregistered 3D shapes. Varying the distance
threshold leads to varying false acceptance rates (FAR) and
false rejection rates (FRR).

face recognition. Although many test data sets exist,
there are no standard training data sets. The reason
is that such a training set must be general enough to
represent all appearance of faces under any pose and
illumination condition. Since we believe that a stan-
dard training set is necessary for a fair comparison,
we make the model publicly available. Due to its 3D
structure it can be used indirectly to generate images
with any kind of pose and light variation or directly
for 2D and 3D face recognition. It is planned to ex-
tend the data collection further and provide it on the
web site. We also plan to provide results of experi-
ments and renderings with more complex illumination
models. Using these standardized training and test
sets makes it possible for researchers to focus on the
comparison of algorithms independent of the data. We
trained our previously published face recognition algo-
rithm and provide detailed results (parameters for the
model). Other researchers are invited to use the same
standardized test set and present the results on our
web site (http://faces.cs.unibas.ch/).
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