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Abstract. In this paper we take a fresh look at the problem of extract-
ing shape from contours of human faces. We focus on two key questions:
how can we robustly fit a 3D face model to a given input contour; and,
how much information about shape does a single contour image convey.
Our system matches silhouettes and inner contours of a PCA based Mor-
phable Model to an input contour image. We discuss different types of
contours in terms of their effect on the continuity and differentiability of
related error functions and justify our choices of error function (modified
Euclidean Distance Transform) and optimization algorithm (Downbhill
Simplex).

In a synthetic test setting we explore the limits of accuracy when recover-
ing shape and pose from a single correct input contour and find that pose
is much better captured by contours than is shape. In a semi-synthetic
test setting — the input images are edges extracted from photorealis-
tic renderings of the PCA model — we investigate the robustness of our
method and argue that not all discrepancies between edges and contours
can be solved by the fitting process alone.

1 Introduction

Automatic face recognition from a given image is one of the most challenging
research topics in computer vision and it has been demonstrated that variations
in pose and light are the major problems [Zha00]. Since 2D view based methods
are limited in their representation, most face recognition systems show good
results only for faces under frontal or near frontal pose. Methods that are based
on the fitting of deformable, parametrized 3D models of human heads have been
proposed to overcome this issue [Bla03].

Our work investigates the problem of recovering the 3D shape of human faces
from a single contour image. Previous work shows that shape recovery methods
based on pixel intensities or color are inappropriate for matching edges accu-
rately, while multi-feature approaches such as [Rom05], where contour features
are used among other features, achieve higher accuracies at the edges. To fur-
ther understand the benefits and limits of the contour feature, here, we take a
step back to look at this feature in isolation. Our first interest lies in building
a system to robustly find a solution with a small contour reconstruction error.
Our second interest lies in determining the degree to which such a solution and
therefore the 3D shape of the face is constrained by the input contour.
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Fig. 1. Schematic view of the problem (see Section 1.1)
1.1 The Problem

Adapting a model to contours in an image can be decomposed into two subprob-
lems: feature extraction and fitting (see Fig. 1). In a naive approach, feature
extraction is performed by applying a general-purpose edge detection algorithm,
such as [Can86]. Face model and camera parameters are then optimized by min-
imizing a distance between the model contours and the edge image.

There is an important discrepancy where the two processes interface: edge
extraction computes edges and not contours. Even though most contours are
found among the edges, they are incomplete and noisy. There are several ways
to deal with this problem, (a) using a robust distance function which ignores
both unmatched edges and unmatched contours, (b) using the model to identify
which edges correspond to contours, (c) using a more specific form of contour
detection in the first place.

In this paper we present and discuss a system based on the first approach:
can we robustly fit model contours against edges by using an appropriate image
distance measure. Additionally we investigate the ultimately more interesting
question: assuming contour extraction was ideally solved, how well could we fit
our model to a correct and complete input contour (synthesized from the model)
and how good is the reconstruction of shape and pose.

1.2 Related Work

Moghaddam et al. [Mog03] built a system similar to our own and applied it
both to video sequences and to photos acquired with a multi-camera rig — single
images are not discussed. Only silhouettes are used, detected using background
subtraction. Another difference lies in the error function used in their system.

Roy-Chowdhury et al. [Roy05] also model faces from video sequences, but
as opposed to this work a locally deformable model is used. In the second part
of their paper silhouettes and control points of the model are matched against
edges extracted from the video frames. Model and optimization technique are
very different from ours, except that an Euclidean Distance Transform is used
for image comparison.

Llic et al. [11i05] adapt an implicit surface representation of a morphable PCA
model to silhouette contours by solving a system of differential equations. Very



interesting is their integrated approach of detecting the contour based on the
location and direction of the model contour.

Both [Mog03] and [Roy05] use multiple images to achieve higher accuracy.
While this is legitimate, our basic question of the constraint imposed by a single
contour cannot be answered. None of the cited papers provide quantitative re-
sults describing reconstruction performance ([Roy05] do, but only for their SfM
experiment, which is not based on contours).

In the remainder of the paper we first discuss types of contours and their
properties, to develop exact terminology. We then explain in detail the design
and implementation of our fitting system. Finally we motivate and describe our
experiments, and discuss results.

2 Contours

Different authors often mean different things when using the term “contour”.
Sometimes, contours are “image contours” (f.i. in the context of Active Contour
Models) a synonym of what we call “edges”. In the context of shapes, contour
is often used interchangeably with “silhouette”. Other definitions of contours
are implied by terms such as “inner contours”, “texture contours”, or “shadow
contours”.

2.1 Types of Contours

We define contours as the collection of those edges whose image locations are
invariant to lighting. Contours fall then into two classes: those originating in the
geometry of the solid (“occlusion contours”), and those originating in material
properties (“texture contours”). Please note that a line drawing of a face would
characteristically consist of just these edges.

Occluding Contours. Assuming a smooth solid shape [Ko0e90], occluding con-
tours can be formally defined as the projection of those points P of the surface
whose surface normal n is perpendicular to the direction e from the eye to P,
i.e. (n,e) = 0. This definition encompasses both “outer” contours (silhouettes)
and “inner” contours (self-occluding contours), where the latter only appear on
non-convex solids.

Tezture Contours. Texture Contours are salient edges on texture maps. For
faces, such contours are found at the lips, the eyes, the eyebrows, as well as at
hair boundaries and within hair.

2.2 Continuity and Differentiability

We will now investigate how different types of contours behave differently under
parameter changes in terms of continuity and differentiability of related error
functions. These characteristics are very important when choosing an optimiza-
tion algorithm.

For simplicity’s sake we describe the problem in a 2D analogy (Fig. 2). We
observe the projections of silhouette (S7,S52), inner contour (U) and texture
contour (T") with respect to a rotation p around R.
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Fig. 2. 2D analogy of contour projection (see 2.2)

Only T is fixed with respect to the rotating body. Without knowledge of
the shape of the body its projection x; and its speed dd—’i; can be analytically
determined, as long as T is not occluded.

Let now s1, so be defined as the two tangent rays with the maximum angle
between them, and u the third tangent ray in the figure. When rotating the body
clockwise, u will disappear. When rotating it counter-clockwise, u will coincide
with s to form a bitangent, then disappear.

Therefore the projection z,, is not defined for all p. Whether absence of the
contour is penalized or not, x, will contribute a discontinuity to a compound
error measure. The projections 1,z are always present and unique, but where
s becomes a bitangent the derivative ‘Eﬂ is undefined.

In 3D the situation is analogous: the movement of texture contour points with
respect to parameters is analytically differentiable [Rom05], silhouette movement
is piecewise differentiable (albeit generally not analytically), and inner contour
movement is discontinuous (with 3D solids, contours appear, disappear, split
and merge under parameter changes [Koe90]).

2.3 Contour Matching

Which contour features are accessible for matching depends of course on the
application context. If indeed one was reconstructing faces from a shadow play,
then only silhouettes would be available. Much more common is a scenario where
the input is an ill-lit photograph and all types of contours are in principle acces-
sible. While it is our goal to use all types of contours, we concentrate for now on
silhouettes and inner contours, where the latter are arguably the hardest feature
to work with.! Because the error function is neither differentiable nor even con-
tinuous, our chosen optimization algorithm is Downhill Simplex [Nel65], which
uses only function evaluations and deals well with ill-behaved functions.

3 Implementation

Our face model is computed from a database of m = 200 laser scanned faces.
Each face is defined by n = 23888 3D vertices which are in correspondence
across the database [Bla03]. Let x; € R®",1 < i < m be vector representa-
tion of these faces, then our (m-1)-dimensional face space is the affine subspace

! Please note that in most related works only the silhouette feature is used, which
does not suffer from discontinuities.



{>m aix| Yot a; = 1}, or {Z 4 v|v € V} with & the mean face and V' the
vector subspace spanned by the mean-free vectors (1 — &, ..., &, — T).

We estimate the probability of faces by fitting a multi-variate Gaussian dis-
tribution to the mean-free data, yielding the pdf p(p) = cexp (—3pT= " 'p)
for coefficient vectors p € IR™, where ¥ = -XXT and ¢ a normalization con-
stant. This assumption allows us to judge plausibility of results and to randomly
sample test cases.

In practise we work with an orthonormal basis U = (uq, ..., u,,), where U
is such that UTXU = A, with A the diagonal matrix of eigenvalues of X (in
descending order). This transformation is called Principal Component Analysis,
and allows us to make a feature reduction which incurs a minimal L? error.
Specifically if p € R” is a projection of p € IR™ onto the k-dimensional subspace
span(ui, ..., uy), then E[|[Up — Up|[*] = >, | Ai. In our case the sum of the
first 30 eigenvalues comprise 96% of the sum of all 200 eigenvalues, therefore
fitting in a 30-dimensional subspace is mostly sufficient for good results.

Hair. While the hair line for an individual person may remain steady for years,
hair length and hair style do not. Additionally hair often covers more innate and
salient features such as ears and chin. In our opinion, hair is a destructive factor
when creating a PCA-based model, leading to many false correspondences.

For this reason our head model is completely without hair. When registering
heads we then need robust procedures which simply ignore portions of the input
picture covered by hair. Future work may attempt to use such portions of input
pictures constructively, but for the time being our model has no concept of hair.

Shape Error. Although we understand that the L? error is not optimal to
describe shape similarity as perceived by humans, it is sufficient in our context.
We quote the L? error as root-mean-squared error, with unit mm. This error is
easy to visualize as average distance of the reconstructed surface from the true
surface (although this is of course only correct if the error is relatively uniform).
With the definitions for m,n, A\; from above the L? distance between two faces
described by shape vectors p, g is calculated as:

B(p.a) =\ D Niloi — a0, 1)

3.1 Error Function

Let p’ € R¥ k= m+ 7 be a shape vector extended by the seven camera
parameters of the pinhole camera model. Then the error function to be minimized
must map such parameter vectors p’ to scalar values. Since the binary contour
image I € {0,1}*"" is in the 2D domain, it is reasonable to compose the error
function F as E(p) = D(I, R(p)) with R : R¥ — {0,1}*"" a rendering function
and D : {0,1}*" x {0,1}*"" — IR an image comparison function (“distance”).
As opposed to previous work, we do not add a prior probability term to our
error function, as overfitting has not been an issue in our experiments.



Rendering Function. The contour is found and rendered by determining front
and back facing polygons on the mesh parametrized by p. Edges between a
back and a front facing polygon are contour candidates. Hidden contours are
eliminated through z buffering. Finally the remaining edges are projected onto
an image.

Distance Function. Choosing a good distance function is much more difficult.
Edge comparison is a research topic in its own right with many interesting ap-
proaches, such as elastic matching, Fourier Descriptors, or Shock Graphs [Sid98],
to name a few. All of them are computationally expensive and require relatively
noise-free input. As long as we are dealing with unreliable input from the Canny
edge detector, we choose the more primitive yet robust approach of distance
transforms, which solves correspondence implicitly (albeit not necessarily well).
The Euclidean Distance Transform [Fel04] of an input contour image is a
scalar field d : IR? — IR where d(z,y) is the Euclidean Distance of the pixel at
(x,y) to the nearest contour pixel. With S = {(z,y)|R(p)(x,y) = 1} the set of
“on” pixels in the synthetic contour image, we calculate the distance term as

D(I,R(p))zﬁ S d(zy). @)
(

z,y)€S

Such a distance term is fairly robust against unmatched edges, although
such edges can create an undesirable potential. On the other hand, contours not
present in the input image will create large error terms and optimization will
drive them toward completely unrelated edges. To prevent this, the gradient far
away from input edges should be small or zero.

We experimented with three modifications of the EDT, of the form g(x,y) =
fld(z,y)): (a) “Linear with plateau” f(d) = d for d < ¢, f(d) = ¢ for d > ¢,
(b) “Quadratic with plateau” f(d) = d? for d < ¢, f(d) = ¢? for d > ¢, (c)
“Exponential” f(d) = exp(—d/c) + 1 for some ¢ > 0. (a) and (b) result in
distance transforms with a gradient of zero at pixels that are further than c
pixels away from any input contour point, while (c) produces a monotonically
decreasing gradient. Note that the latter is qualitatively most similar to the
boundary-weighted XOR function of [Mog03].2

3.2 Minimizing Algorithm

For fitting against occluding contours, where the error function is not well be-
haved and analytical gradients are not available (see above), we chose an op-
timization algorithm based on function evaluations only, the Downhill Simplex
algorithm due to Nelder and Mead [Nel65] in an implementation from [Pre99].
Much effort went into the setup of the initial simplex, and an appropriate
restarting behavior. Our initial simplex is based on the estimated standard de-
viation of pg — pr (the difference of initial guess to ground truth). Therefore,

2 Moghaddam et al. integrate their error over the entire area between input and syn-
thetic silhouette, with penalties of 1/d per pixel.



if o is the vector of the estimated standard deviations of the k parameters to
be adjusted, our initial simplex is made up of the k + 1 points p; = po + o; for
1<¢<kand pg =pa — %0', the initial guess.?

After convergence of the algorithm, the algorithm was restarted with an
initial simplex constructed in the same way as above, but with the point of
convergence in place of the initial guess. The algorithm was started no more
than ten times for a given test case, and aborted if three consecutive runs did
not produce a new minimum. This resulted in an average of around 6000 error
function evaluations per test case.

3.3 Camera Model and Initial Pose Estimate

Our camera model is the pinhole camera model which has seven degrees of
freedom: three rotations (azimuth «, declination §, rotation p around viewing
axis), and four translations (left =, up y, distance from object to focal point f,
distance from focal point to photographic plate d). Only «, d, f have influence on
occluding contour formation, while the other parameters describe a 2D similarity
transform. When randomizing test cases the contour-defining parameters were
sampled uniformly: o € [-90°,90°],8 € [—30°,30°],1/f € [Om~!,2m~1].

From the rotations we derived our pose error measure, the aspect error. The
aspect error is the angle of the compound rotation required to align the coordi-
nate frame of the ground truth with the coordinate frame of the estimate. For
small angles and frontal views this is approximately the sum « + § + p.

Like in previous work we always assume that an initial guess for «, 6, p, z,y
and the scale f/d has been provided by either a manual procedure or another
program. When randomizing test cases we simulate this condition by randomly
scattering the parameters in question. Examples of the low accuracy of the initial
guess can be seen in Fig. 4 and 5.

4 Experiments
4.1 Test Settings

We differentiate between three types of test settings: realistic, synthetic and
semi-synthetic. The realistic test setting is an application of the system to real
photos; while being the most difficult test setting, reconstruction accuracy cannot
be quantified, unless the test subject is laser scanned.

In the synthetic test setting, geometrically correct contours are generated
from random configurations of the model (Fig. 3 (a)). This simulates the con-
dition where feature extraction has been optimally solved (Fig. 1) and an exact
match is possible.

In the semi-synthetic test setting, random configurations of the model are
rendered photorealistically and edges extracted [Can86]. This mimics the real-
istic case, except that reconstruction accuracy can be easily measured since the
ground truth is known. Additionally, the difficulty of the problem can be con-
trolled and specific aspects of contour fitting can be investigated by f.i. enabling
or disabling hair texture and hard shadows (see Fig. 3 (b)-(d)).

3 When using an uncentered simplex with po = pe we observed a bias of the error of
the reconstructed parameters toward positive values.
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Fig. 3. Hierarchy of the used test settings: (a) synthetic: contour computed from geom-
etry. (b)-(d) semi-synthetic: edges extracted from renderings with increasingly many
features.

4.2 Synthetic Experiments

The purpose of this experiment is to answer our second key question, how much
information about shape does a single contour image convey in the best imagin-
able case.

We achieved best results matching 30 principal components and an unmodi-
fied Euclidean Distance Transform (the modifications in 3.1 are designed for the
semi-synthetic case). On a large test set with 500 test cases the distance term
was under 0.5px for 90% of the results (Fig. 4).

The aspect error of the fits are on average very small: 92% with aspect error
€q < 3°. Please note, that in a first approximation e, =~ e, + es + e,. Therefore
the pose is indeed very well estimated.

In terms of shape error the fits are not significantly nearer to the ground truth
than the mean is. It is worth mentioning that this by no means signifies that
the recovered head is “practically random”. Let p,q be independent random
heads, where all components p;, ¢; are taken from a normal distribution with
p = 0and ¢ = 1. With E[(p; — ¢;)?] = 2 and (1) it can easily be shown
that E[L?(p,q)?] = 2E[L*(p,0)?]. Therefore L?(fit, ground truth) would be on
average /2 times larger than L?(ground truth, mean) if the reconstructed heads
were indeed random.

Nevertheless, the fact that the mean is almost as similar in L? terms as the
reconstructed heads is very interesting. Obviously reconstructed heads can be
very different from the ground truth, while displaying virtually the same contours
(Fig. 4). This supports the view that contour does not constrain shape tightly,
even with a holistic head model.
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Fig. 4. Synthetic Case: (a) Matched contour (black), input contour (white, mostly cov-
ered by matched contour), contour of initial guess (gray). (b),(c) ground truth (actual
camera parameters, frontal view). (d),(e) reconstruction (estimated camera parameters,
frontal view). Comparing 3D reconstruction to ground truth demonstrates that even
near-perfect fitting of contour may result in very dissimilar 3D shape. Distance error
and aspect error were near the median (egist = 0.29pX, €asp = 1.47°, €2 = 3.61mm).

0.2 0.4 0.6
distance term [px]

C

(
(e
More evidence is provided by a look at correlations: while aspect error corre-

lates strongly with contour distance (correlation coefficient ¢ = 0.62), L? error
correlates less (c = 0.44).%

4.3 Semi-Synthetic Experiments

The purpose of this experiment is to see whether we can formulate the dis-
tance function in such a way, that comparing an edge map to model contours
automatically leads to correct correspondence between contours and edges.

We used the same test set as in the previous paragraph, and generated edge
maps for the four “unwanted feature” combinations, test persons with/without
hair (predicate H), hard shadows enabled/disabled (predicate S). For brevity
we notate e.g. the case “with hair, shadows disabled” as H,—S.

Image Errors. Since the input is now an edge map, which is generally quite
different from the synthetic contour R(pr) (in the notation of 3.1 with pr the
parameters of the ground truth), we are now faced with a residual error e;es =

4 To determine correlation, results with a distance term > 1px (1.6% of results) were
excluded.
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Fig. 5. Semi-Synthetic Case (H, S): Characteristic test result with vertex selection; re-

construction, aspect and L? error near the median (érec = 0.97px, €asp = 3.99°%, €72 =
3.18mm). (a) Matched contour (black), input contour (white), contour of initial guess
(gray). (b),(c) ground truth (actual camera parameters, frontal view). (d),(e) recon-
struction (estimated camera parameters, frontal view).
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D(I,R(pT)), res > 0. This residual error is highly dependent on the nature of
each test case as well as edge extraction parameters. Therefore it would be a
mistake to quote the distance error eq = D(I, R(pr)) of a result vector pg, as
its value does not describe reconstruction quality.

Instead we quote the reconstruction error e;ec = D(R(pr), R(PR)), the dif-
ference between the resulting contour and the synthetic input contour. This error
measures the performance of the algorithm to match the model to the unknown
true contour.

However, we must be aware that the algorithm can only minimize e; and

never ey (for which the ground truth must be known). If there is a solution
with eq < es the system will prefer it, even if it means e,.. becomes larger.



Reconstruction. Our foremost goal is to reduce the above reconstruction error,
€rec- In a comparison of the three variants of the distance transform described
above, “linear with plateau” was best in every respect. Especially the non-zero
gradient of the exponential variant proved troublesome with incomplete input.
The plateau constant ¢ was chosen depending on the amount of noise in the
input (¢ = 25 for —H,—S, until ¢ =5 for H, S).

Results were best if only 20 principal components were matched. Be aware
though that if p is a random shape vector, E[L?(p,0)] = 3.26mm, while for
q,q; = pi(1 <i <20),¢; =0 (else) E[L?*(q,0)] = 3.14mm. So on average the
first 20 components carry 96% of the L?-“content”.

An interesting result in itself is that the presence of hard shadows made
virtually no difference on reconstruction accuracy (Fig. 5) — when looking again
at Fig. 3 (c) and (d), this makes a strong case for contour matching, considering
how different the lighting is between these two pictures.

On the other hand, hair had a very destructive influence on reconstruction
quality, mainly because our model is an entire head and in many test cases the
silhouette of the head was matched against the hair line of the input image. For
this reason we include results where the model was artificially restricted to the
face area (“vertex selection”, predicate V).

Results for both aspect and shape error (Fig. 5) are in line with expectations
from reconstruction errors. The results are by no means bad in absolute terms
(Fig. 5), but compared to the synthetic case much accuracy is lost.

5 Conclusions

We have shown that it is possible to compute a shape and a pose of a human face
explaining a given input contour with consistently very high accuracy. While the
original pose is recovered very well, the recovered shape often differs greatly from
the ground truth. This predestines contour matching as part of a system com-
bining several features, as it can ensure contour consistency while not imposing
tight constraints on the shape.

More difficult is the case where the input contour is replaced by an edge map
from a picture, because of the different nature of edges and model contours.
While it is possible to design a distance function to solve correspondence im-
plicitly, there are limits to robustness where an unwanted edge is too close to a
missed contour. We showed that restricting fitting to areas where such misun-
derstandings are least likely to occur does alleviate the problem, but would like
to point out that this solution suffers from the problem that the scope of the
restriction is arbitrary and has to be appropriate for all test cases simultaneously.

In our problem description we have listed three basic options how to overcome
the edge-contour correspondence problem: (a) using a robust distance function,
(b) using the model to establish correspondence, (c) using a more elaborate
feature detection process. In this paper we thoroughly explored the first option,
showing on one hand that despite the simplicity of the method, good results
can be achieved most of the time. On the other hand certain kinds of false



correspondences are difficult to avoid without exploring the other options, which
will be our focus in future work.

Furthermore we have laid out that different types of contours require differ-
ent optimization techniques; we believe that combining subsystems for different
types of contours may prove to be a powerful concept.
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