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Abstract

We present a novel model based stereo system, which ac-
curately extracts the 3D shape and pose of faces from mul-
tiple images taken simultaneously. Extracting the 3D shape
from images is important in areas such as pose-invariant
face recognition and image manipulation.

The method is based on a 3D morphable face model
learned from a database of facial scans. The use of a strong
face prior allows us to extract high precision surfaces from
stereo data of faces, where traditional correlation based
stereo methods fail because of the mostly textureless input
images. The method uses two or more uncalibrated images
of arbitrary baseline, estimating calibration and shape si-
multaneously. Results using two and three input images are
presented.

We replace the lighting and albedo estimation of a
monocular method with the use of stereo information, mak-
ing the system more accurate and robust. We evaluate the
method using ground truth data and the standard PIE image
dataset. A comparision with the state of the art monocular
system shows that the new method has a significantly higher
accuracy.

1. Introduction
The accurate estimation of pose and shape of faces is an

important precondition for image understanding and manip-
ulation. Detailed 3D models [3] have proven to be among
the most accurate methods for tasks as diverse as face recog-
nition [1, 12] and image manipulation [2].

Faces present a difficult problem to low level stereo al-
gorithms. A face is relatively textureless except from a few
edges due to wrinkles, the mouth and the eyes. This makes
the extraction of high quality surfaces with general correla-
tion based methods virtually impossible. Compare e.g. the
recent work of [11] for a state of the art example that still is

far too smooth because of the general prior used.
As faces are one of the most important objects of daily

life, it is justified to inject specific knowledge into the multi-
view vision task. This is accomplished here by using a
shape prior learned from a database of 3D face surfaces.

Our approach is similar to the monocular methods of [2,
13] but uses stereo information instead of the colour prior of
the monocular method. This improves accuracy and robust-
ness, not only because more data is used, but also because
no lighting and albedo parameters have to be estimated.

We first give an overview over prior approaches to model
based surface extraction, detail the algorithm in Section 4
and compare our results to the state of the art monocular
system in Section 5. We show that it is possible to achieve
much higher accuracy using multiple images than with one
image alone.

2. Prior Work
Deformable 2D face models were introduced by [9, 16]

and extended to three dimensions by [3]. These models are
generative and are fit to an image using nonlinear optimisa-
tion techniques and a suitable distance measure.

Fitting a model to multiple images when point to point
correspondences are known has been addressed in [6] and
for a different model in [14]. These approaches use rel-
atively coarse manually defined deformable models, for
which no prior distribution is known. Our method is dif-
ferent from these approaches, as we fit the model directly
to the images instead of going through point to point corre-
spondences. This removes the need to tune a patch-based
correspondence detector and allows an accurate handling of
occlusions and perspective deformations. As a result higher
accuracy is achieved at the cost of a lower processing speed.

The joint estimation of calibration and shape using an ac-
tive appearance model is addressed by [8]. They show that
a calibration accuracy comparable to that of a calibration
grid can be achieved. No evaluation of the reconstruction



accuracy was given, but the low complexity model used can
not represent detailed surfaces as recovered in this paper.

An important part of the algorithm presented here is the
simultaneous fitting of the visible contour to multiple im-
ages. This is connected to the work of [4, 17] but differs
in the use of a detailed shape prior instead of the more
general assumption of a closed, continuous surface. Most
previous work using silhouettes assumed that the occlud-
ing contour could be extracted accurately and completely,
while our model based approach is robust enough to allow
us to cope with noisily detected edges. [7] uses experiments
on synthetic data to assess the accuracy of a surface recon-
struction with a detailed shape model from a single contour
image. No results on real world data were presented. We
extend that work by showing that high quality surfaces can
be extracted from real world images when combining a soft
edge detection scheme with a derivative based optimisation
algorithm.

[3, 18] already used multiple images to fit a detailed
model. This was done by applying a moncular shape from
shading algorithm to multiple images simultaneously. Our
approach improves upon this work by eliminating the light-
ing and albedo estimation and substituting it with a colour
difference cost. No absolute error estimates and only two
examples are available for [3, 18], making a quantitative
comparision impossible.

Similar to our work are the monocular methods of [3]
and [13], which extract a face surfaces from a single image.
They work by joint estimation of shape, albedo, pose and
lighting. Multiple features are combined in a least squares
sense by [13], including a landmark, silhouette, and shape
from shading cost. We use this method as a baseline and
show how the reconstruction accuracy can be significantlyy
improved by eliminating the lighting and albedo estimation
and including a stereo colour difference cost. In addition
to being more accurate, this method is also more robust
against difficult to model albedo effects such as make-up,
facial hair, moles and cast shadows.

3. Contributions
We present a novel accurate stereo fitting system using

a detailed generative 3D shape model. The accuracy of
the method is evaluated on ground-truth data and compared
against the state of the art monocular system [13]. Addi-
tional experiments on the standard PIE dataset [15] vali-
date the pose invariance of the method on real world face
images. We are able to fit a detailed model with a much
higher precision than demonstrated in previous papers. This
is achieved by combining monocular and stereo cues. The
method works directly on the input images, removing the
need to first detect correspondences between images and
making the method suitable for arbitrarily large baselines.
The use of ground-truth data allows the exact quantification

of the contribution of each image cue. It is shown how the
silhouette information from a few images facilitates the ex-
traction of a surface which is already more accurate than the
full monocular method. The additional use of colour dif-
ferences between images lowers the remaining residual to
between 1/2 and 2/3 the residual of the monocular method.

4. Method
Detailed prior knowledge learned from a database of 3D

facial scans is used to extract a high quality surface from
the input data. The database is used to learn a 3D Mor-
phable Model (3DMM), which is a space of faces spanned
by the linear combination of basis-faces. The basis-faces
are brought into correspondence in an off-line processing
step, and can then be combined to create new faces [3].

The basic paradigm is an analysis by synthesis frame-
work. Hypotheses are generated, their probability given the
observed data is evaluated and the parameter set maximis-
ing this probability is determined using a nonlinear optimi-
sation procedure. The difficulty lies in measuring the dis-
tance from the observed image to the hypothesis. The fol-
lowing sections describe measures contributing to the cost
function to be minimised. These terms are combined by
computing their weighted sum. The weights depend on the
data available and are a tunable setting. As the goal is to
present a generally applicable method, all results in this pa-
per were created using the same set of weights, which shows
that the choice of the weights is not critical within a certain
range.

4.1. The model

The unknowns that need to be determined are the shape
of the face and the camera parameters. The cameras are
modelled as pinhole cameras and are described by their ex-
ternal and internal parameters ρc = (fc,pc, tc, rc) where
fc denotes the focal length, pc is the principal point, tc is
the translation and rc = (rc

x, rc
y, rc

z) are the three rotation
angles. The superscript c is the number of the camera. We
denote the rotation matrix corresponding to the angles rc

by R(rc). The action of a camera onto a vertex v is

Pρ(v) := πf,p(R(r)v + t) (1)

πf,p(w) :=
[
fwx/wz + px, fwy/wz + py

]T

An additional parameter vector α determines the shape of
the face.

A linear morphable model M = (µ,D) consists of a
mean vector µ and an offset matrix D and maps a parame-
ter vector onto a vector of stacked vertex positions.

M(α) := µ + Dα (2)

We denote the rows of the model corresponding to the i’th
vertex as Mi, µi, and Di respectively.



While this paper describes the algorithm using the intro-
duced parameters, other parametrisations are better suited
for certain problems. An additional global rotation is used
when the calibration of the cameras is already known to
a relatively high precision. The camera positions are then
fixed by a prior distribution on camera parameters, and a
global rigid head movement is allowed.

4.2. Shape Prior

To avoid over-fitting and because the face shape is not
fully constrained by the images a regularisation of the hy-
pothesis space is needed. Assuming that faces are normally
distributed in face space we rotate and scale the face space
by performing a PCA such that each parameter has a Gaus-
sian PDF with unit variance (cov(α) = I). After rotation
the probability of observing a face with parameters α is pro-
portional to exp{−‖α‖2}. As we have formulated the prob-
lem as a minimisation, this contributes with the negative log
to our cost function and yields the shape prior term

Ep(α) := ‖α‖2 , (3)

which is added with a suitable weight constant to the objec-
tive function.

4.3. Landmarks

Landmarks are used to provide an initial estimate of the
camera position and to constrain the results to a sensible
solution. Without landmarks a perfect explanation of a set
of images can be achieved by positioning the head such that
it is projected onto a single pixel of the same colour in each
image. A landmark is a tuple (li,pi) consisting of a vertex
index li in the mesh and a point pi in the image plane. The
landmark term

Ec
l (ρ

c,α) :=
∑

i

‖Pρc(Mli(α))− pi‖2 (4)

penalises the distance between the projected vertex and its
expected position. One landmark term per camera is used.

4.4. Silhouette Term

An accurate, lighting invariant shape cue is the silhou-
ette [4, 17]. The silhouette term measures how well the
predicted visible contour matches the edges present in the
image. While most work on silhouettes assumes that the
contour can be extracted accurately and uniquely, we do not
impose this constraint, but are instead able to handle inse-
curely detected silhouettes and false positives.

To evaluate the silhouette cost the points on the visible
contour of the current hypothesis and a cost surface defined
over the image space of each camera is needed. Assum-
ing that the visible contour points are given as a 3D Mor-
phable Model Ms and the cost surface is defined as a func-
tion S : R2 7→ R we define the silhouette term for each

C
os

t

Position
Input Image Cost Surface Cut through Cost Surface

Figure 1. Integration of multiple edge thresholds results in a
cost surface encoding not only the direction towards the near-
est edge, but also the saliency of each edge. This allows the
algorithm to lock onto weak edges, if they are supported by the
whole image. The green line shows a situation where the silhou-
ette edge is the strongest edge, which results in a global minimum
at this position. Without careful tuning to the image at hand it is
impossible to separate the silhouette at the red line from the texture
edges, but the integrated cost surface still shows a local minimum
at the right position without being tuned to this specific image.

camera independently as

Es(ρc,α) :=
∑

i

S(Pρc(Mi
s(α)))2 (5)

Determining the silhouette cost surface. No general
edge detection method will be able to perfectly find the sil-
houette in real world images without tuning the settings of
the edge detection algorithm to the images at hand. To over-
come this problem we propose an image transform that re-
sults in a suitable cost surface without committing to a sin-
gle setting. Similar to [5] we integrate the information over
a range of edge thresholds into a smooth cost surface, which
has the desirable property of having accentuated minima at
edges over the full range of thresholds, while still discern-
ing between strong and weak edges. This allows the opti-
misation to fix even to weak edges when they are supported
by the whole image, while retaining the capability to skip
over towards stronger edges when the weak edges are not
consistent with the current hypothesis.

To construct the cost surface the following steps are per-
formed

1. Using an edge detector with a sensitivity threshold a a
series of binary edge images Ea1 , . . . , Ean is created.

2. The distance transforms Da1 , . . . , Dan of the images
are calculated.

3. Using a smoothing constant κ the cost surface is cal-
culated as S := 1/n

∑n
i=1 Dai/(Dai + κ). In the

experiments a κ of 10 pixels was used. A suitable
value for κ is 1/20th of the expected size of the pro-
jected head in pixels. κ determines the influence range
of an edge in an adaptive manner.

The edge detector used in this paper is gradient magnitude



Candidate Contour Points and overlapping intervalls

Candidate Contour Lines

Figure 2. Efficent determination of an equally spaced set of
contour points. Candidate contour lines (blue) are distinguised
from interiour lines (red) by testing if both adjacent triangles
project onto the same side of the line. Equally spaced candidate
points are created by intersecting a regular grid with the candi-
date lines. Interiour points (red) overlapped by a triangle are then
removed, leaving a set of contour points (blue).

thresholding with non-maximum suppression. An example
of the resulting cost surface is shown in Figure 1.

Determining the visible contour A set of approximately
equally spaced points that project to the visible contour are
detected efficiently in a three stage process:

1. First a set of triangle edges that are potentially on the
visible contour are selected by testing if the projections
of the third point of the two adjacent triangles lie on the
same side of the projected line.

2. Next candidate points are created by intersecting
equally spaced horizontal and vertical lines with the
candidate contour lines. The intersection points are
saved per grid-line.

3. Another iteration over the triangles is used to remove
all points overlapped by a projected triangle.

Note that this method allows us to find the visible contour
accurately working only with the 2D projected topology and
without doing a full rasterisation or depths tests. The de-
tected contour points are used to generate a morphable con-
tour model from the full shape model. The resolution of the
contour model depends on the density of the intersection
grid and not on the resolution of the shape model.

The selection of contour points is kept fixed for some it-
erations of the optimisation, even though a rotation makes
a different set of points to contour points. The difference
of the projected point positions when the contour is sliding
over the model is small, so this is a justifiable approxima-
tion. After some steps of the optimisation the contour model
is reinitialised and the minimisation continues.

4.5. Colour Difference Cost

The colour difference term measures the sum of squared
differences between colours at corresponding points in two
images, where the correspondence is determined by the
current shape and camera hypothesis. Given a morphable

model Md of points on the face surface that are visible in
the cameras c and c′ the colour cost between two images is

Ed(ρc,ρc′
,α) := (6)∑

i

‖Ic(Pρc(Mi
d(α)))− Ic′

(Pρc′ (Mi
d(α)))‖2 .

When more than two images are to be compared, multiple
colour difference terms are used. Which input images are
paired depends on the applications. Whenever two images
have a large overlap, the colour difference term can be used.

The set of visible points is kept constant for some it-
erations of the optimisation, even though visibility might
change. After the large initial rotation directed by the land-
marks not much visibility change is happening and this ap-
proximation is save.

Determining the sample points The sample points are
chosen to be distributed over the 3D model such that their
projections hit approximately each pixel once. This ac-
counts for projected triangle size and distributes the pro-
cessing load evenly over the image.

Given a hypothesis about cameras c and c′ and the cur-
rent shape we determine a set of sampling points using a
procedure that assures that every pixel in the first and in the
second camera is assigned at most one sample point, and
the maximum number of sample points is created.

1. Create a depth-buffer rendering of the model seen from
cameras c and c′ and save for each pixel the surface
point rendered into the pixel.

2. Initialize an auxiliary depth-buffer with the resolution
of camera c′.

3. For each surface point seen in camera c:
(a) Use a depth comparison to reject points not visi-

ble in camera c′.
(b) Reject points whose depth from camera c′ is

larger than the value in the auxiliary depth-buffer.
(c) Overwrite the auxiliary depth-buffer with the

depth as seen from camera c′ and the index of
the pixel in camera c.

4. Use the surface points that made it into the auxiliary
depth buffer as sampling points.

4.6. Objective Function

The complete objective function for the stereo system
combines these terms into a weighted sum, where the
weights wp, wl, ws, wd define the relative importance of
each term.

E(ρc1 , . . . ,ρcn ,α) = wpEp(α) + wl

∑
i

Eci

l (ρci ,α) +

ws

∑
i

Eci
s (ρci ,α) + wd

∑
i,j

E
ci,cj

d (ρci ,ρcj ,α) (7)



Stereo: Stereo: Stereo: Monocular:
Input Images Landmark Landmark + Landmark + Silhouette Ground Truth (One Image Chosen)

Silhouette + Colour Difference
Figure 3. Each cue increases the reconstruction accuracy, leading to significantly better result than possible with the monocular
system. Reconstructions of the face surface from three input images are compared to ground truth data acquired with a structured light
system. The results are a representative sample showing good fits in the first three rows and a bad fit in the last row. Columns two to four
display results for ever more terms in the stereo algorithm, showing the significant contribution of the silhouette and the colour difference
term. The results obtained with the state of the art monocular system are shown in the last column. A measure of reconstruction quality is
the point wise distance between the reconstructed surface and its closest point on the ground truth. The residual is shown in the inset head
renderings. Uncoloured regions have no ground truth data, green is a perfect match, and red denotes a distance of 3mm or more. Originally
all input images have the same resolution, they are presented at different sizes only due to space reasons.

4.7. Optimiser

A Levenberg-Marquard (LM) optimiser [10] specialised
on nonlinear least squares and the quasi-newton method
L-BFGS-B [19] were evaluated. The optimisation rou-
tines were provided with fully analytic derivatives. The L-
BFGS-B optimiser turned out to be three times faster on
our problem, but needs a stronger regularisation to remain
stable. The results in this paper are therefore calculated
with the LM method. The reason that L-BFGS-B is faster,
even though it needs a larger number of function and Ja-

cobian evaluations than LM, is that the runtime of the LM
method is dominated by the QR-decomposition of the ap-
proximately 250000× 150 element Jacobian.

Scaling The parameter space is scaled automatically, to
make the optimisation numerically stable. Scaling factors
for all parameters are determined on each restart of the op-
timisation such that a change of one scaled unit corresponds
to an average change of one pixel of the projected vertex po-
sitions in all images.



Input Images Stereo Ground Truth Monocular Input Images Stereo Ground Truth Monocular

Figure 4. The new stereo algorithm is robust under directed lighting and yields significantly more accurate surface reconstructions
than the monocular algorithm. The monocular results were created by fitting to the frontal view, the stereo results use three images. The
distribution of the distance between the recovered surface and the ground truth is shown in the smaller inset head renderings. Uncoloured
regions have no ground truth data, green is a perfect match and red is distance of 3mm or more.

4.8. Loose Ends

To actually make it work some additional details had to
be taken care of. When the focal length is not restricted
by an additional term, it is estimated very far off for some
heads, degrading the reconstruction accuracy. To overcome
this a term restricting the focal length to be between one
and five times the size of the sensor was added. To make
the method faster a multi-stage fitting similar to that of [13]
using a pyramid of sampling resolutions and shape parame-
ters is used. Specular highlights adversely influence the per-
formance of the method. At the moment this is overcome
by ignoring saturated pixels, but that should be changed to
include the rich information available in specular highlights.

5. Evaluation

We evaluate the method using three datasets. The first
dataset containts images of 20 subjects from three views
with ambient only lighting. This should be a difficult dataset
for monocular fitting, as monocular shape estimation de-
pends on shape from shading. The second dataset containts
five subjects and two lighting conditions using single di-
rected light sources. For these first two datasets the shape
was acquired simultaneously by a structured light scanner,
giving us ground truth data for the experimental validation.
These datasets are used to determine the influence of each
term of the stereo reconstruction method and to compare
against the monocular method [13]. We show that the re-
construction accuracy can be greatly improved under all
three lighting conditions. The third dataset is the neutral
expression part of the CMU PIE image dataset [15]. No
ground truth is available for this dataset, but an evaluation
of consistency of the results shows that the stereo method is
robust against large pose variations.

The Model was learned with a modified optical flow al-
gorithm from a dataset of 100m+100f cyberware scans.

5.1. Ground Truth

The ground truth datasets are used to quantitatively mea-
sure the improvement in reconstruction accuracy that can be
achieved by using model based stereo instead of a monocu-
lar reconstruction. The model did not contain the test exam-
ples. Using the monocular system from [13] and the stereo
system introduced in this paper we reconstructed the shape
from the images in the ground-truth dataset and aligned it
rigidly with the scanned surface. The distance the vertices
of the reconstruction and their closest points on the scanned
surface was calculated. Reconstruction results and the dis-
tribution of the residual over the surface is shown for a rep-
resentative set of examples in Figures 3 and 4. Figure 3
demonstrates that the addition of each term to the cost func-
tion results in a significant increase in reconstruction accu-
racy, resulting in much better surfaces than those recovered
by the monocular system. Similar results were obtained for
the directed lighting dataset, depicted in Figure 4. Figure 5
sums up the results over all subjects in the dataset, show-
ing that the distance between the reconstructed surface and
the ground truth is a lot smaller for the stereo method than
for the monocular method. Already fitting the silhouette of
three images results in a lower residual than using the full
monocular system on a single image.

It is interesting to note that while a smaller residual indi-
cates a better fit, there is an infinite number of surfaces with
the same residual but with very different perceptual quality.
For many applications it is more important to accurately re-
construct the shape of the mouth, nose, and eyes than to
accurately match the size of the cheeks. So when evaluat-
ing the reconstruction quality it is important to take a look
at the reconstructed shapes. To allow this comparision the
ground truth is included in Figure 3 and Figure 4 showing
that our method is indeed far more accurate than [13], which
is perceptually somewhere between multiview silhouette re-
construction and multiview stereo reconstruction.



Histogram over pointwise distances to ground truth
Ambient Only Dataset (20 Subjects)

0
0 1 2 3 4 5 6

Fr
eq

ue
nc

y

Distance to Ground Truth (mm)

Stereo: Landmarks + Silhouette + Colour
Stereo: Landmarks + Silhouette

Stereo: Landmarks
Monocular

Directed Light Dataset (5 Subjects)

0
0 1 2 3 4 5 6

Fr
eq

ue
nc

y

Distance to Ground Truth (mm)

Stereo: Landmarks + Silhouette + Colour
Stereo: Landmarks + Silhouette

Stereo: Landmarks
Monocular

Figure 5. The use of multi-view information results in a much
higher accuracy than achievable by the monocular method.
The histogram over the residual over all subjects shows that al-
ready the multi-view silhouette fitting reduces the residual to-
wards the ground truth to a value lower than that of the monocular
method. A higher frequency of lower residuals is better.

5.2. Face Recognition

Reconstructing the shape of a face seen under varying
pose should always result in the same surface. We use this
to test our method on the neutral expression part of the stan-
dard PIE dataset [15]. 912 neutral expression images of
68 subjects were manually marked with five landmarks per
image to initialise the optimisation. The dataset was split
into a gallery and three probe datasets with two to four im-
ages. The cameras chosen for the gallery set have the PIE
numbers 22, 25, 29, the probe image camera sets are de-
tailed in Figure 7. To quantify the accuracy of the recon-
struction we compute the similarity between the shapes, and
report how many probe images yield a shape which is clos-
est to the gallery shape. The distance between two shape
vectors α1,α2 was defined as in [12] to be

d(α1,α2) =
α1 ·α2

‖α1‖2‖α2‖2
(8)

The recognition results tabulated in Figure 7 and exempli-
fied in Figure 8. They show that the system is robust against
large variations in pose and can handle narrow and wide
baseline setups with a variable number of images. Most of
the wrong classifications are caused by occlusion of the face
or ears due to hair, which is not yet handled in our system.
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Figure 6. Camera Positions of the PIE dataset

Probe Images Landmarks + Silhouette + Colour
1st 2nd 1st 2nd 1st 2nd

37 05 10% 18% 50% 68% 63% 82%
37 05 09 7% 18% 62% 74% 74% 85%
37 05 09 14 19% 37% 76% 82% 87% 94%

Figure 7. The model based stereo system is robust against pose
variations. The system was able to extract similar surfaces for dif-
ferent views of the same subject. The shape based recognition rate
increases when more views are used. The columns labelled “1st”
show the frequency of correct results, “2nd” is the frequency with
which the correct result was within the first two subjects returned.

This result should be seen mainly as a measure of the
viewpoint invariance of our method, and not as a proposed
face recognition algorithm. All images of a subject were
taken simultaneously, which would not be the case in a real
face-recognition experiment. On the other hand only the
shape and not the albedo of the faces was used for recog-
nition which severely limits the discriminative power of the
algorithm. Higher recognition rates (99.9% to 75.6%) have
been reported [12] for the full PIE dataset for a system in-
corporating the monocular method of [13].

6. Conclusion and Future Work

When multiple images are available we can replace the
estimation of lighting and albedo of the monocular system
with stereo information. This results in a significant im-
provement in reconstruction accuracy. This was demon-
strated using ground truth data and the standard PIE image
dataset. The method fits the morphable model directly to the
images, removing the problems associated with uniqueness,
occlusion, and the irregular deformation of patches between
images encountered in traditional correlation based stereo
and bundle adjustement methods. These advantages makes
the method applicable to images of any baseline.

An interesting complement to the presented algorithm
would be a method to evolve the recovered surface further,
such that surfaces which are not exactly within the span of
the model could be recovered.

Using the accurate estimation of surfaces that has been
demonstrated, it may be possible to learn a detailed tem-
poral expression model from multi-view video sequences,
which could then be used to track, predict, and manipulate
expressions in video streams.
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Figure 8. The stereo system is robust against large variations in pose and baseline. Each row shows reconstruction results of the same
subjects with different set of cameras. The first two rows show successfull reconstructions while the last row illustrates an example where
the shape was not extracted reliably. The input images are annotated with their PIE camera number and are all used at the same resolution.
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