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Abstract

This paper presents a novel framework to localize in a
photograph prominent irregularities in facial skin, in par-
ticular nevi (moles, birthmarks). Their characteristic con-
figuration over a face is used to encode the person’s identity
independent of pose and illumination. This approach ex-
tends conventional recognition methods, which usually dis-
regard such small scale variations and thereby miss poten-
tially highly discriminative features. Our system detects po-
tential nevi with a very sensitive multi scale template match-
ing procedure. The candidate points are filtered according
to their discriminative potential, using two complementary
methods. One is a novel skin segmentation scheme based
on gray scale texture analysis that we developed to perform
outlier detection in the face. Unlike most other skin detec-
tion/segmentation methods it does not require color input.
The second is a local saliency measure to express a point’s
uniqueness and confidence taking the neighborhood’s tex-
ture characteristics into account. We experimentally evalu-
ate the suitability of the detected features for identification
under different poses and illumination on a subset of the
FERET face database.

1. Introduction

Facial skin exhibits various small scale structures in the
surface (wrinkles, scars) and the texture (nevi — a general
term for pigment lesions like birthmarks and moles) that
stand out from normal skin appearance and represent
potentially valuable references for individual distinction.
Among such skin irregularities moles are especially suited
for identification.  Their predictable appearance, also
under changing illumination, facilitates detection. And
their numerous appearance in conjunction with unique
distribution patterns scales well with extensive galleries.
Furthermore moles require no abstract encoding, in contrast
to most other facial features. This fact could be exploited to
query a database without having to provide a sample face,
e.g. “search all faces with a birthmark near the upper right

lip”.

The goal of this paper is to present techniques for de-
tection and validation of moles that are prominent enough
to be used for identification. Relying on such small scale
variations is an unusual approach in face recognition. Con-
ventional recognition algorithms are designed to work on
low resolution images. For example the well known Eigen-
faces approach [12], representative for linear appearance
based subspace methods, performs dimensionality reduc-
tion using PCA on the raw image data and thereby implic-
itly treats local variations as noise. Also model based al-
gorithms like the Active Appearance Model in 2D [4] or
the Morphable Model in 3D [1] use PCA to model intra
class variations. These methods cannot capture small unex-
pected details in their reconstruction without severe overfit-
ting, which would render the whole method useless. There
exist many techniques based on local descriptors using e.g.
textons, DCT coefficients or Gabor wavelet features. How-
ever, none of these methods involve an explicit represen-
tation of one of the aforementioned skin features. To our
knowledge the only other attempt to exploit mole-like fea-
tures for identification was presented by Lin and Tang [8].
Their work comprises a multilayer representation of a face
in global appearance, facial features (organs), skin texture
and irregularities, which all contribute to the identity. The
SIFT framework is used for detection and description of ir-
regular skin details which are then combined in an elastic
graph for recognition. Their approach also tackles stabil-
ity and distinctiveness issues by validating interest regions
using multiple gallery samples per person and by ensuring
dissimilarity to normal skin regions. Unfortunately the au-
thors do not provide methods how to compute the partition-
ing and correspondence for the local regions (organs and
skin).

We introduce a novel framework capable of detecting
prominent moles. We attach importance to the fact that,
in contrast to [8], our methods are not bound to a certain
recognition scenario. That means in particular that we work
independent of pose and illumination and that we are able
to deduce personally identifying features from one gallery
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Figure 1. Overview of processing steps and dependencies in our
mole detection framework. The left lane shows the main pro-
cessing steps to obtain locations and saliency measures for moles.
Starting from a Morphable Model reconstruction, the right lanes
illustrate how the prior knowledge of the 3D face model is incor-
porated into the system.

image per individual. Our system is divided into three main
steps corresponding to the three properties that characterize
a local region as birthmark, see also Figure 1.
Appearance: From distance a mole appears simply as
small dark region of circular shape surrounded by a brighter
area, i.e. a so called ’blob’. This description also holds
under varying viewing conditions (pose/illumination). We
employ a very sensitive multi scale detection scheme, see
section 3, to identify even the most subtle mole candidates.
Location: Due to its sensitivity, the detector also responds
to typical facial features such as nostrils, corners of eyes,
eyebrows and mouth as well as to unexpected deviations
like hair strands. These points are not discriminative across
individuals and it is crucial for our scheme that they are re-
jected. With prior knowledge derived from the Morphable
Model we compute in section 4 a binary segmentation
of the face in order to rule out points in those non-skin
areas. In contrast to most other skin detection/segmentation
schemes [13] our approach is texture based and therefor
requires no color input or training.

Context: Finally the notion of saliency is introduced in
section 5 which allows us to assess the importance of
each birthmark candidate for recognition. This procedure
takes the relationship between a point’s size and contrast
and the texture of it’s neighborhood into account. In
essence it represents a combined measure of uniqueness
and confidence. Points below a certain saliency threshold
are immediately discarded.
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Figure 2. Illustration of the feature/region mapping technique
based on dense correspondence. In this example a binary mask,
marking the cheeks, was selected in the reference frame. Via a
fitting of the Morphable Model this mask can be mapped to the
photograph and vice versa detected skin features can be mapped
to the model.

2. Face representation

Our framework incorporates face-class specific knowl-
edge from the 3D Morphable Model developed by Blanz
and Vetter [1]. The model is derived from 3D laser scans,
registered to a common reference in which shape and tex-
ture are parameterized. A statistical analysis of this data is
performed by Principal Component Analysis. The result-
ing sets of orthogonal eigenvectors represent facial proto-
types which can be linearly combined to form new faces.
For a set of model parameters (linear coefficients) and addi-
tional parameters for pose and illumination, a realistic face
image can be synthesized. Given a photograph of a face,
an analysis-by-synthesis approach [2] is used to fit these
parameters such that the rendered face model matches the
input image. The result is a complete 3D reconstruction of
the face where shape and texture in occluded regions (due to
pose) have been automatically replenished from the model.

While the model itself delivers features that can be used
for recognition [2], we utilize it primarily as a preprocessing
to establish a dense correspondence between the pixels of a
face photograph and the fixed reference coordinate system
in which the model’s vertices are parameterized. Thereby
we benefit from the model’s capabilities in two ways:

e Vertices marking certain features or regions in a face
can be consistently selected in the reference frame.
Given an image and it’s Morphable Model reconstruc-
tion, these vertices can then be projected into the image
domain, either as point sets or as triangular mesh. This
technique, shown in Figure 2, allows us to roughly lo-
calize the facial organs as well as to determine regions
which are likely to contain only skin. The latter will
serve our skin segmentation algorithm as initialization.

e With the reference frame acting as intermediary, loca-
tions of feature points in different images can be en-
coded and compared in a pose-independent manner.
That means, once we localized interesting moles, their
positions within the face are mapped to the reference
frame. In these “universal” coordinates we then match
the individual mole configurations for recognition.



The optimization algorithm which fits the model to an
image [2] requires manually defined feature points like the
tip of the nose or corners of the eyes for initialization. Once
a 3D reconstruction is computed the corresponding points
from the 3D model can be projected back into the image.
We compute the average distance between manually de-
fined and reconstructed coordinates to get an indicator for
the quality of the fit in terms of correspondence. In the fol-
lowing we shall refer to this measure as alignment error.
If not stated otherwise we perform all computations only
within the support region of the model. This is sufficient
since the detected moles must be compared in a common
coordinate system which is only defined within the spatial
limits of the reconstruction.

3. Mole candidate detection

We detect moles by means of normalized cross correla-
tion (NCC) matching. A Laplacian-of-Gaussian filter mask
serves as template, because of its very close resemblance to
the blob-like appearance of moles. NCC is not scale invari-
ant and the object size is not known a priori. This requires
us to compute the matching for several resolutions, using
templates of varying scale. With a growing number of res-
olutions a straight forward implementation becomes very
inefficient. Therefor, inspired by Mikolajczyk ez al. [9], we
carry the matching out in separated steps for candidate point
localization in space and scale respectively.

First NCC is computed for a small subset of scales, dis-
tributed across the desired search range. In the output image
of each scale s; we then find all local maxima (xz;, y;; Sk)
to pinpoint candidate positions in 2D. Only these points are
further considered. In the second step we compute corre-
lation coefficients for the remaining points, using templates
that correspond to mole sizes in the range [.5sy,2s]. If
the maximum response across these scales is below a fixed
threshold the point is discarded. Otherwise the template
with maximal correlation defines the points scale for sub-
sequent processing.

Handling scale and space independently has the draw-
back of causing duplicate point detections, meaning candi-
dates located at different scales and/or coordinates but actu-
ally responding to the same feature in the image. We iden-
tify such cases and remove all duplicates except for the one
with largest scale.

Another problem arises in areas of changing brightness
as cause of shading (changing shape or illumination). The
intensity gradients surrounding a mole conflict with the uni-
form area assumption coded in the mole templates. An ex-
ample for which the described method fails, can be seen in
Figure 3. The two obvious solutions to handle such situa-
tions are not applicable for us. 1) Lowering the correlation
threshold would produce too many false positives in less
problematic facial regions. 2) Matching against additional

(2) (b) (© (d)
Figure 3. Example of two prominent moles where detection in
original image (a) fails. The magnified section (b) shows multi-
ple gradients in vicinity of both moles. After applying our illumi-
nation compensation to this region (c,d), the detector succeeds on
both moles. Intensities in (b,d) are normalized.

templates on multiple scales that also incorporate skin shad-
ing would dramatically increase the computational effort.
Instead, we compensate for the shading in the input image.
In section 4.2, in the context of skin segmentation, we in-
troduce an image transformation that attempts to remove
gradients from shading. The mole detector is then simply
applied to the output of this procedure, with better results.

Before conducting the experiments, we hand-labeled in
a few gallery images the locations of moles that we deemed
salient. The number of scales (range & sample steps) and
the NCC threshold were then chosen such that all marked
points could be located. Template detection typically re-
duced the number of candidates for further processing to
1-2%0 of the pixels representing a face.

4. Facial skin segmentation

The template detector does not incorporate any specific
knowledge as to where moles can appear. As consequence
it may nominate any facial feature with similar appear-
ance, e.g. pupils, nostrils or corners of the mouth. More-
over we must expect sporadic hits in areas with hair (beard,
hairstyle). Since none of these findings are characteristic
for a person, they have a negative impact on the recognition
performance and must therefore be eliminated. We tackle
this problem by computing a binary segmentation of the
face into skin and “non-skin” regions. Mole candidates ly-
ing outside the skin segment can then be rejected. Note that
it is not possible to reverse the execution order of detection
and then rejection. This becomes clear when we look at the
segmentation results at the end of section 4.1.

The non-skin region is composed of two parts. One part
is derived directly from the 3D reconstruction with the Mor-
phable Model. In the reference frame of the model we have
defined the subset of vertices which belong to the eyes, nos-
trils and the lips and then projected this selection to the im-
age (see section 2). Due to imperfect reconstructions the re-
sulting mask may not be very precise. We take this into ac-
count by dilating the mask according to the measured align-
ment error.



Figure 4. Display of reconstructed locations for eyebrows, eyes,
cheeks and lips on two faces with problematic model fitting. Im-
portant features are globally misaligned, due to outliers/hairstyle
(left) and expression (right). These shortcomings necessitate an
alternative method to mask such regions.

The second non-skin component marks outliers. By this
term we refer to all kind of unexpected objects in the sense
that they do not appear in every face. Unfortunately the
Morphable Model offers no clear strategy how to deal with
outliers. On one hand eyebrows, beard and the hair line can
be reproduced in the texture. On the other hand hairstyle
or open mouth (any expressions) are not represented. Even
worse, if larger areas of the face contain outliers this can
seriously perturb the model parameters and corrupt a recon-
struction in several ways: 1) Due to the holistic representa-
tion, adapting the modeled texture to outliers comes at the
cost of higher reconstruction errors in other regions. As
result differences between the real and the rendered image
“even out”. 2) The estimated illumination parameters are
diverted and can introduce cast shadows into the synthe-
sized image. 3) The reconstructed shape deteriorates and
leads to bad correspondence and thereby misaligned fea-
tures. Two such problematic examples can be seen in Fig-
ure 4. Our conclusion from these shortcomings is that we
cannot trust the model’s reconstruction error to reveal all
outliers. Instead, we utilize only the most reliable contri-
butions of the model, i.e. pose and parts of the shape, to
initialize a general purpose segmentation algorithm.

In gray scale skin and non-skin are only distinguish-
able by their luminosity and/or texture. It is often the
case, that their respective intensity distributions show sig-
nificant overlap, which makes per pixel decisions inappro-
priate. The techniques presented below operate on local
neighborhoods. In the next section we propose a simple
procedure to find skin regions by example. Then we intro-
duce a preprocessing step to render the results more robust
against varying lighting conditions, see section 4.2. For bet-
ter understanding we initially motivate these methods using
only thresholding as binary segmentation. Later, in section
4.3 we compare our results with a state-of-the-art segmen-
tation algorithm.

Figure 5. Texture similarity procedure applied to multi-textured
image (left), with 7%9" = I* and I1°°** shown in color. The cor-
responding matching error X, (right) clearly marks regions con-
taining the sample texture.

4.1. Segmentation based on texture similarity

In the work of Efros and Leung [5] textures are synthe-
sized by repeatedly matching the neighborhoods around un-
processed pixels in the synthesis image against all possible
source patches extracted from a sample texture. The center
pixels of the minimum error patches then build up the syn-
thesized texture. With modifications this idea can be used
as analysis tool to compute a measure of texture similarity
for one image (target) with respect to a given sample of the
texture (source).

Let 1% be the target image for which the similarity
should be computed. Further we denote with 7°™ a source
image and with 7°°“ an associated binary mask, both defin-
ing a texture sample region. The similarity is then computed
for each pixel p € I'9" independently by taking its local
neighborhood szgt and searching within the seed region of
I°7 for the best matching patch N;". Unlike [5] we do not
impose different weights on the neighborhood’s pixels. The
texture similarity error per target pixel p is:

Eis(p) := mi

tgt src
q\NgTCC(IS%m]seed) HN Nq HSSD M

p

This measurement does not yet take the statistics of the sam-
ple texture into account. In order to determine how likely
a target pixel may originate from this texture we actually
compute the k-nearest-neighbors to N/9%. The error Ef, is
then defined, analogous to equation (1), as the average of
the corresponding closest-patch distances. Figure 5 demon-
strates that ideally this procedure will indeed distinguish be-
tween textures.

The method is easily adopted to our segmentation prob-
lem. We have chosen the cheeks as facial area which is un-
likely to contain outliers. As illustrated in Figure 2, we are
able to determine the corresponding region in a novel face
from its Morphable Model reconstruction, which provides
the skin seed mask 7°¢°. Recalling Figure 4, we also see
that this particular mapping is very robust in case of prob-
lematic fittings. The algorithm is first applied to the original
face image with 19" = [, Under the assumption that the
selected seed contains only skin, the output E¥, inside this
area defines the range of matching errors one can expect for
similarly textured regions. The maximum of this range is
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Figure 6. Segmentation by thresholding on the output of texture
similarity. In first and second row texture similarity was computed
on original image with a very good result in the top row. The bad
result in the second row shows how this method can be negatively
affected by shading. Performing the same task on an illumination
compensated version of the image solved this problem (3rd row).

used as threshold to the entire EF, and we obtain a segmen-
tation:

1 if B (p) < max Ef(q)

Iskin (p) = qEIseed )

0 otherwise

Notice that, without averaging over the k-NN, all errors in-
side 7*¢°? would be zero and this idea could not work. Re-
sults for two faces are displayed in Figure 6. We see that
shading may provoke large gaps in the segments in lighter
areas of the skin. This problem is dealt with in the next
section. Another point to notice is that this segmentation
method also treats larger moles as outliers. We employ a
simple heuristic to prevent such areas from being excluded
from further processing: if a mole candidate is located in-
side a hole of the skin segment, we still accept it if the gap’s
size is less than two times larger than the candidate’s scale.
Obviously this rule forces us to perform mole detection first.

4.2. lllumination compensation

In 3 and the previous section we pointed out that sig-
nificant changes in the skin’s luminosity can have a neg-
ative impact on the performance of the mole detector and
the texture similarity algorithm. Therefor we introduce a
method to compensate for this effect by performing illumi-
nation compensation, based on a variant of homomorphic
filtering [6]. The underlying simplified reflectance model
assumes that for each pixel location (x,y) the image can
be described by the product of reflectance and illumination:
I(z,y) = R(z,y) - L(x,y). Thus, to recover R one would
simply need to divide the image by the illumination. Un-
fortunately L is unknown. However, the model further sug-
gests that lighting changes slowly and smoothly across an
image while reflectance manifests itself in high frequency
components. The idea is now to approximate L by a low-
pass filtered version of the image, here denoted by F,(I).
Since the frequencies of function products are not directly
separable (see [6]) this is done in the log-domain. The re-
flectance becomes:

log (R(z,y)) = log (I(x,y)) — log (L(z,y)) 3)
~ log (I(x,y)) — [Fip (log(D))] (2, )

The exact type and application (spectral or spacial domain)
of filter vary among different homomorphic filtering ap-
proaches. In our case an approximation to the illumination
term is computed by locally fitting smooth functions to the
logarithm of image brightness surface.

Given an image [ the fitting procedure works as follows.
For each pixel p we interpret pixels in it’s neighborhood
N, as points on a 3D surface. N, is translated into lo-
cal coordinates (x;,y;, I;) such that the center pixel p be-
comes (0,0,0). Then we compute a least-squares fit of
the quadratic function z = f(z,y) = %2? + bay + Sy?
to these points. Let z,(g) denote the LSQ solution for
patch N, evaluated at pixel ¢ € Np,. The approxima-
tion induces an error on each pixel of the fitted patch (ex-
cept on the center pixel). As this procedure is repeated for
the whole image, every pixel p € [ receives errors from
several patches, namely those neighborhoods which some-
where overlap with p. We accumulate these error contribu-
tions separated into positive and negative components:

)=y X min00) ~z,0) @

p {alpeEN,}

The definition of E; is analogous, but rather computes
max(0, -). If this procedure is applied to log(I), the errors
can be interpreted as the right side in equation (3), where the
low-pass filter has been implemented as average of smooth
function approximations of the neighborhood. Taking the
exponential, brings us back to the image domain and re-
sults in two reflectance images. The advantage of separat-
ing positive and negative errors in equation (4) is that we



Figure 7. Comparison of skin segments obtained from GrabCut
(bottom) and thresholding (top). GrabCut has the advantage of
producing fewer small and isolated segments with the downside
that it is too conservative in shaded regions.

can isolate different reflectance contributions. For exam-
ple R~ = exp(E;,) represents the details with darker ap-
pearance like creases, moles or pupils, whereas RT captures
brightness peaks like sharp specular highlights. For the fi-
nal results in our paper we use only the R~ image as input
for the mole detector as well as for the texture similarity
algorithm.

4.3. Thresholding vs. “GrabCut”

In order to verify, if we could further improve our skin
segmentation, this section compares the results computed
by simple thresholding of the texture similarity output E¥,
(obtained on the R~ input) with a modern algorithm based
on graph cuts. In graph cut segmentation techniques the pix-
els of an image are represented as nodes in a graph with the
edges reflecting their spatial relationship. The edge weights
are defined as some measure of similarity on the connected
pixels. Via a cost function, that takes the edges between
segments and regional properties into account, the segmen-
tation problem is reformulated into one of partitioning the
graph, such that the cost function is minimized.

For the case of two labels (object or background) Boykov
and Jolly [3] presented a graph cut formulation that can
be efficiently computed with a combinatorial optimization
technique and leads to a globally optimal binary labeling.
Their cost function is influenced by two models, one for
each label, of the pixel values in the respective segment.
The models are learned from seed regions in the image, for
which the labeling is known. However, with no prior knowl-
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Figure 8. Illustration of density estimation for saliency. A pixel
group ¢ (red) and all other similarly shaped constellations (green)
within it’s neighborhood populate a multidimensional feature
space. The density is estimated by the number the samples lying
within a spherical Parzen window around the feature point ¢.

edge on the location of object and background, this place-
ment of seeds demands for user interaction. Rother et al.
[11] extended this approach. Their method, called GrabCut
embeds the “one-shot* algorithm of [3] into an EM scheme,
where model parameters and labeling are iteratively refined.
One major benefit of this procedure is, that it suffices to
provide seeds for only one label. Thanks to this property
GrabCut is directly applicable to our problem setting.

Figure 7 compares results obtained by our own imple-
mentation of this algorithm with those from thresholding.
In both cases the inputs are the texture similarity error E,
computed on the illumination compensated R~ image and
the cheek region seed. It is important to note that compu-
tations are limited to the support of the Morphable Model
reconstruction. This is not relevant for thresholding but for
GrabCut, because it prevents pixels from the background
(clothes, efc.) to “pollute* the statistics associated with the
two labels. We observe that GrabCut (with manually tuned
but constant parameters) tends to generate less scattered
segments with smoother segment boundaries. However, it
cuts off too many pixels in highly shaded regions (especially
around the nose) and thus produces larger gaps in the skin
segment. This is unacceptable for our current application,
since we may lose important moles (also due to the heuristic
we implement on segment holes, see section 4.1).

5. Local saliency

Saliency is commonly used as synonym for discrimina-
tive power. The more salient a feature is, the better it should
be distinguishable from others. The exact definition, how-
ever, depends on the actual application. In [14] Walker ef
al. formulate this notion over the probability density in fea-
ture space and reason that salient features should lie in low
density areas. Hence, intuitively saliency corresponds to
rarity. In their paper the pdf is approximated with mixtures
of Gaussian kernels. Hall et al. [7] take on the same defini-
tion but use a more accurate Parzen windows technique for
density estimation, which we also adopt here.

Having constrained the detected mole candidates to skin
regions, our goal is now to define a measure that allows us
to differentiate between prominent and more or less coinci-
dental hits. The latter may occur in “noisy” regions, e.g. in



Figure 9. Filtering of mole candidates according to saliency. Cir-
cles mark points with saliency sale > 1 which are later used to
identify this face. Zoomed neighborhoods of four candidates with
corresponding patches from exp(E;,) show that our saliency mea-
sure indeed relates a point’s size and contrast to the surrounding
noise and delivers an intuitive measure of importance.

the presence of freckles or stubble, where a single dark spot
has no significance. A point’s scale and correlation coeffi-
cient (from detection) contribute to this assessment but are
not sufficient. We therefore combine two more properties,
the contrast and the uniqueness of a point wrt. it’s neighbor-
hood, into a saliency value.

Consider a mole candidate composed of a group of d pix-
els stored as vector ¢. Further assume a square neighbor-
hood Ny centered around the same location. In our case the
width of the neighborhood is fixed and corresponds roughly
to the pixel distance between both nostrils in a frontal view.
We extract from Ny all possible translated and mirrored re-
gions 7; that have a shape similar to ¢'but do not share any
pixel with ¢. Let’s assume there are M such regions, which
populate a d-dimensional feature space. We then consider
a hypersphere with radius € and volume V; around ¢ and
determine the number £ of feature points lying within the
sphere, as shown in Figure 8. The ratio k/?M is then an
estimate for the probability density at §. Based on the mea-

surement of k£ we define our saliency as:
min ”q*:z‘“ fork =1
7 CNg,7iNg=0 (3)

M-k
S fork > 1

sal(q) :==

The radius is chosen as € = d - 012\,(1_, with o Ny denoting the

standard deviation of all pixels in Nz but not in ¢. Let us
take a closer look at the two cases in equation (5):

e k> 1: As more points fall within the e-sphere, the

estimated density around ¢ increases by the ratio ﬁ

The saliency simply decreases by the same rate, taking

values in the range [0, 1).

e k=1: No other feature is closer than € to ¢. We
compute the distance to it’s nearest neighbor in
multiples of the sphere radius. Since € is related to
the sample variance in Ny the saliency becomes a
normalized measure of how much the pixels in ¢ stand
out from the noise in it’s neighborhood, ranging from
[1,00).

We apply the described procedure at every mole can-
didate location in the illumination compensated image
exp(E;,), constrained to skin segments. An example of
evaluated points is shown in Figure 9. In the left image all
points delivered by the mole detection process have been
highlighted. The red squares mark candidates which lie ei-
ther in non-skin regions or which have a computed saliency
sal. < 1. The remaining points are deemed salient and
will be used for identification. Of course not all accepted
points are equally “interesting”. Figure 9 also depicts the
processed patches (right column) of the three most salient
moles and one of the rejected points. The non-skin parts
are masked out and the remaining pixels are normalized.
Clearly the saliency correlates with mole size and is higher
for points with less variation (noise) in the surrounding.

6. Experiments

We perform identification purely based on the previ-
ously detected moles on a subset (reported in [2]) of the
FERET [10] face database, for which we obtained the Mor-
phable Model reconstructions. This subset consists of gray
level images with resolutions in the range of 50-80 pix-
els eye distance. It contains images of 194 individuals in
11 poses from which we chose the sets ba (frontal view)
for the gallery, bc-bh (head rotated by +40°, £25°, +£15°)
and bk (frontal view with different illumination) as probe
faces. The recognition experiments are limited to persons
for which the respective gallery image contains at least one
mole with a saliency greater than some threshold. Our sim-
ilarity measure is based on the mole locations in the Mor-
phable Model reference coordinates and their associated
saliency values. We compare two given faces F' and G as
follows:

e The saliency values of all moles of a face are trans-

formed to relative weights w; = sal; />, sal;.

e A proximity threshold oy, is defined as the average of

the alignment errors of both faces.

e For each mole location ¢ in F' we find the closest point

4 from G. If their distance is smaller than 3oy, the
point ¢ is considered matched and we define a match-
ing value v; = min(w/, w§)/ max(w}", w§). In this
case the point j from G is removed so that it cannot
match any other locations in F'. Otherwise (distance
than proximity threshold) ¢ remains unmatched, we set
v; = 0 and proceed to the next item.



Saliency threshold (Gallery subset size)

5756) [ 10(107) [ 15 (83)

Probe | Fail | Perf. || Fail | Perf. || Fail | Perf.
bc 69 | 55.77 39 | 63.55 26 | 68.67
bd 34 | 78.20 13 | 87.85 8 | 90.36
be 17 | 89.10 7 | 93.45 41 9518
bf 20 | 87.18 51 95.32 51 93.97
bg 47 | 69.87 24 | 77.57 17 | 79.51
bh 68 | 56.41 30 | 71.96 21 | 74.70
bk 42 | 73.07 22 | 79.44 13 | 84.33

Table 1. Performance of identification purely based on detected
moles. The gallery (frontal views, ba) and probe are limited to
faces, which contain at least one mole in the gallery with a saliency
greater than the denoted threshold. Performance is listed as num-
ber of unidentified faces from the gallery subset (Fail) and in per-
cent (Perf).

Gallery / Saliency Gallery .

Probe threshold subset size Fail | Perf.
ba / be 42 | 78.35
ba/ bf ! 194 46 | 76.28
bb / bc 5 180 17 | 90.55
bi/ bh 5 184 21 | 88.58

Table 2. Identification from moles on full gallery with +15° ro-
tated probes and on two non-frontal galleries.

e After processing all point from F' the matching score
. ne
is computed as ) ;" v;/ max(ng, ng).

From the identification results displayed in Table 1 and 2
we notice that: 1) Performance drops with increasing rota-
tion angle independent of the gallery pose. This is obvious,
since the overlapping area in which moles from both faces
can be matched shrinks. Recognition under the different il-
lumination (bk set) suffers from the lower contrast between
moles and skin which results in lower saliency values and
thus more rejections. The total number of detected moles is
1600, whereas in all other sets we can account for more than
2200 moles. 2) At least 80% of the faces have some promi-
nent moles (saliency > 5) for which we obtain recognition
performances above 87%. This is quite remarkable, consid-
ering that in average about 5-10 locations, representing less
than 0.3% of the pixels in a face, determine it’s identity. En-
forcing more prominent moles leads to better performance
but greatly reduces the number of usable faces. Somewhere
between saliency thresholds of 10-15 is the limit beyond
which the number of misclassified faces decreases less than
the number of available faces.

7. Conclusion

This paper presented a novel approach to exploit local
skin irregularities as features for face identification. We fo-
cused on the methodology of detection and evaluation of

such regions and showed that it is possible to determine
a persons identity based on only a few well-chosen pix-
els. Future work comprises refinements in the comparison
of local skin features (e.g. valuing the absence of salient
moles as exclusion criterion) as well as fusion with other
face recognition methods to support cases where no moles
are present.
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