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Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
• Relative frequency of an event over time

2. Physical tendencies (propensities)
• Arguments about a physical situation (causes of relative frequencies)

3. Degree of belief (Bayesian probabilities)
• Subjective beliefs about events/hypothesis/facts

4. Logic
• Degree of logical support for a particular hypothesis
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Degree of belief: An Example

• Dentist example: Does the patient have a cavity?

But the patient either has a cavity or does not
• There is no 80% cavity!
• Having a cavity should not depend on whether the patient has a toothache or gum problems

These statements do not contradict each other, they summarize the dentist’s knowledge about the patient
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𝑃 cavity = 0.1

𝑃 cavity toothache) = 0.8

𝑃 cavity toothache, gum problems) = 0.4

AIMA: Russell & Norvig, Artificial Intelligence. A Modern Approach, 3rd edition, 
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Uncertainty: Bayesian Probability

• Bayesian probabilities rely on a subjective perspective:
• Probabilities express our current knowledge. 

• Can change when we learn or see more

• More data -> more certain about our result.

• Subjective != Arbitrary

• Given belief, conclusions follow by laws of probability calculus
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Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our
knowledge – It is different in different situations and for different observers since they have different
knowledge.
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Belief Updates

Model
Face distribution

Observation
Concrete points

Possibly uncertain

Posterior
Face distribution 

consistent with observation

Prior belief More knowledge Posterior belief

Consistency: Laws of probability calculus!



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Two important rules

Marginal

Distribution of certain points only

Conditional

Distribution of points conditioned on known
values of others

Probabilistic model: joint distribution of points

𝑃 𝑥1|𝑥2 =
𝑃 𝑥1, 𝑥2
𝑃 𝑥2

𝑃 𝑥1 =෍

𝑥2

𝑃(𝑥1, 𝑥2)

𝑃 𝑥1, 𝑥2

Product rule: 𝑃 𝑥1, 𝑥2 = 𝑝 𝑥1 𝑥2 𝑝(𝑥2)
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Certain Observation

• Observations are known values

• Distribution of 𝑋 after observing
𝑦1, … , 𝑦𝑁:

𝑃 𝑋|𝑦1…𝑦𝑁

• Conditional probability

𝑃 𝑋|𝑦1…𝑦𝑁 =
𝑃 𝑋, 𝑦, … , 𝑦𝑁
𝑃 𝑦1, … , 𝑦𝑁

X

y1

yi

yN



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Towards Bayesian Inference

• Update belief about 𝑋 by observing 𝑦1, … , 𝑦𝑁

𝑃 𝑋 → 𝑃 𝑋 𝑦1, … , 𝑦𝑁

• Factorize joint distribution

𝑃 𝑋, 𝑦1, … , 𝑦𝑁 = 𝑃 𝑦1, … , 𝑦𝑁|𝑋 𝑃 𝑋

• Rewrite conditional distribution

𝑃 𝑋|𝑦1, … , 𝑦𝑁 =
𝑃 𝑋, 𝑦1, … , 𝑦𝑁
𝑃 𝑦1, … , 𝑦𝑁

=
𝑃 𝑦1, … , 𝑦𝑁|𝑋 𝑃 𝑋

𝑃 𝑦1, … , 𝑦𝑁

More generally: distribution of model points 𝑋 given data 𝑌:

𝑃 𝑋|𝑌 =
𝑃 𝑋, 𝑌

𝑃 𝑌
=
𝑃 𝑌|𝑋 𝑃 𝑋

𝑃 𝑌
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Uncertain Observation

• Observations with uncertainty

Model needs to describe how observations are 
distributed

with joint distribution 𝑃 𝑋, 𝑌

• Still conditional probability

But joint distribution is more complex

• Joint distribution factorized

𝑃 𝑋, 𝑌 = 𝑃 𝑌|𝑋 𝑃 𝑋

• Likelihood 𝑃 𝑌|𝑋

• Prior 𝑃 𝑋

X

y1 + 𝜀

yi + 𝜀

yN + 𝜀
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Likelihood

𝑃 𝑋, 𝑌 = 𝑃 𝑌|𝑋 𝑃 𝑋

• Likelihood x prior: factorization is more flexible than full joint

• Prior: distribution of core model without observation

• Likelihood: describes how observations are distributed

PriorLikelihoodJoint
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Bayesian Inference

• Conditional/Bayes rule: method to update beliefs

𝑃 𝑋|𝑌 =
𝑃 𝑌|𝑋 𝑃 𝑋

𝑃 𝑌

• Each observation updates our belief (changes knowledge!)

𝑃 𝑋 → 𝑃 𝑋 𝑌 → 𝑃 𝑋 𝑌, 𝑍 → 𝑃 𝑋 𝑌, 𝑍,𝑊 → ⋯

• Bayesian Inference: How beliefs evolve with observation

• Recursive: Posterior becomes prior of next inference step

PriorLikelihood
Posterior

Marginal Likelihood
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Marginalization

• Models contain irrelevant/hidden variables

e.g. points on chin when nose is queried

• Marginalize over hidden variables (Z)

𝑃 𝑋 𝑌 =෍

𝐻

𝑃 𝑋, 𝑍 𝑌 =෍

𝐻

𝑃 𝑌, 𝑍|𝑋 𝑃 𝑋

𝑃 𝑌, 𝑍
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General Bayesian Inference

• Observation of additional variables

• Common case, e.g. image intensities, surrogate measures (size, sex, …)

• Coupled to core model via likelihood factorization

• General Bayesian inference case: 

• Distribution of data 𝑌

• Parameters 𝜃

𝑃 𝜃|𝑌 =
𝑃 𝑌|𝜃 𝑃 𝜃

𝑃 𝑌
=

𝑃 𝑌|𝜃 𝑃 𝜃

∫ 𝑃 𝑌|𝜃 𝑃 𝜃 𝑑𝜃

𝑃 𝜃|𝑌 ∝ 𝑃 𝑌|𝜃 𝑃 𝜃
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Summary: Bayesian Inference

• Belief: formal expression of an observer’s knowledge
• Subjective state of knowledge about the world

• Beliefs are expressed as probability distributions
• Formally not arbitrary: Consistency requires laws of probability

• Observations change knowledge and thus beliefs

• Bayesian inference formally updates prior beliefs to posteriors
• Conditional Probability

• Integration of observation via likelihood x prior factorization

𝑃 𝜃|𝑌 =
𝑃 𝑌|𝜃 𝑃 𝜃

𝑃 𝑌
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