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Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
* Relative frequency of an event over time

2. Physical tendencies (propensities)
* Arguments about a physical situation (causes of relative frequencies)

3. Degree of belief (Bayesian probabilities)
* Subjective beliefs about events/hypothesis/facts

4. Logic

* Degree of logical support for a particular hypothesis



University of Basel

Degree of belief: An Example

* Dentist example: Does the patient have a cavity?

P(cavity) = 0.1
P(cavity|toothache) = 0.8

P(cavity|toothache, gum problems) = 0.4

But the patient either has a cavity or does not
e Thereis no 80% cavity!
* Having a cavity should not depend on whether the patient has a toothache or gum problems

These statements do not contradict each other, they summarize the dentist’s knowledge about the patient

AIMA: Russell & Norvig, Artificial Intelligence. A Modern Approach, 3 edition,
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Uncertainty: Bayesian Probability

e Bayesian probabilities rely on a subjective perspective:
* Probabilities express our current knowledge.
e Can change when we learn or see more
* More data -> more certain about our result.

Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our
knowledge — It is different in different situations and for different observers since they have different
knowledge.

* Subjective |= Arbitrary
* Given belief, conclusions follow by laws of probability calculus
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Belief Updates

_/}_'}

Model Observation Posterior
Face distribution Concrete points Face distribution
Possibly uncertain consistent with observation
Prior belief More knowledge Posterior belief

Consistency: Laws of probability calculus!
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Two important rules

Probabilistic model: joint distribution of points

P (x4, x2)
Marginal Conditional
Distribution of certain points only Distribution of points conditioned on known
values of others
P(xl) = Ep(xl, xz) . P(xll x2)
P(x{|x,) = —/———
= ( 1| 2) P(xz)

4

Product rule: P(xq,x,) = p(xq|x)p(x5)
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Certain Observation

* Observations are known values

 Distribution of X after observing

P(X| )

e Conditional probability
P(X, )
P(X ) =
| PG )




University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Towards Bayesian Inference

* Update belief about X by observing

P(X) - P(X| )
* Factorize joint distribution
P(X, ) = P( |X)P(X)
e Rewrite conditional distribution
es ) P( )P ()
P ) =5 ) - A )

More generally: distribution of model points X given data

P(X,") P |X)P(X)
P()  P()

PX|V) =
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Uncertain Observation

* Observations with uncertainty

Model needs to describe how observations are
distributed

with joint distribution P(X, )

e Still conditional probability

But joint distribution is more complex

e Joint distribution factorized
P(X,V) =P |X)P(X)

e Likelihood P(V|X)
e Prior P(X)
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Joint Likelihood Prior

P(X, ") = P(V|X)P(X)

* Likelihood x prior: factorization is more flexible than full joint
 Prior: distribution of core model without observation

e Likelihood: describes how observations are distributed
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Bayesian Inference

Conditional/Bayes rule: method to update beliefs

Likelihood Prior
Posterior p( |X) P(X)
P(X|V) =
P(")

Marginal Likelihood

Each observation updates our belief (changes knowledge!)

P(X) - P(X|V) » P(X|V,7) - P(X] ) = o

Bayesian Inference: How beliefs evolve with observation

Recursive: Posterior becomes prior of next inference step



University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Marginalization

* Models contain irrelevant/hidden variables

e.g. points on chin when nose is queried

e Marginalize over hidden variables (Z)

P(X|") = ZP(X,ZI = ZP( ;JZ(IX?)J(X)
H 7 ’
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General Bayesian Inference

e Observation of additional variables
« Common case, e.g. image intensities, surrogate measures (size, sex, ...)

* Coupled to core model via likelihood factorization

e General Bayesian inference case:
* Distribution of data

e Parameters 6
P('|0)P(B)  P(V|6)P(H)

PO =50y ~ TP 10)P(0) a0

P(0]") o« P(V|0)P(O)
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Summary: Bayesian Inference

Belief: formal expression of an observer’s knowledge
e Subjective state of knowledge about the world

Beliefs are expressed as probability distributions
* Formally not arbitrary: Consistency requires laws of probability

Observations change knowledge and thus beliefs

Bayesian inference formally updates prior beliefs to posteriors
e Conditional Probability
* Integration of observation via likelihood x prior factorization

P(/|0)P(6)
P()

PO]") =
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